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Abstract

Density functional theory is used to generate potential energy surfaces in normal
coordinates for four isotopomers of trichlorofluoromethane: C35Cl3F, C35Cl372 ClF,
C35Cl37Cl2F and C37Cl3F. Ab initio calculations using DFT of geometries suggested
that the PEB0 functional is the most suitable. A new only linear scaling way to
determine an anharmonic surface is presented. This approach uses energies plus
gradient plus second derivatives and is tested by comparison with a surface being
determined by ten times more single point potential energy calculations. The varia-
tional code MULTIMODE and the perturbation theory code SPECTRO are used to
analyse the various potential energy and electric dipole moment hyper surfaces. Vi-
brational levels for fundamentals, overtones and combination bands are presented,
as well as harmonic frequencies, anharmonic constants, rotational constants, ab-
sorption intensities and force constants for the four most abundant isotopomers of
CCl3F.

Zusammenfassung

Mit Dichtefunktionaltheorie wurde die potentielle Energiehyperfläche in Normalko-
ordinaten für die vier Isotopomere C35Cl3F, C35Cl372 ClF, C35Cl37Cl2F und C37Cl3F
erzeugt. Ab initio Geometrieberechnungen mit DFT zeigten, dass das PEB0-Funktional
am geeignetesten für das Ermitteln der Hyperfläche ist. Eine neue linear skalierende
Methode zum Bestimmen der anharmonischen Hyperfläche wurde entwickelt. Sie
berücksichtigt nicht nur den Verlauf der potentiellen Energie sondern auch den
der Gradienten und der zweiten Ableitungen und zeigte gute Resultate im Ver-
gleich mit einer 2D-Fläche. Das variationelle Programm MULTIMODE und das
störungstheoretische Programm SPECTRO wurden zum Bestimmen von Fundamen-
talen, Obertönen und Kombinationsbanden sowie von harmonischen Frequenzen,
Anharmonizitätskonstanten, Rotationskonstanten, Absorptionsintensitäten und Kraftkon-
stanten für die vier häufigsten Isotopomere verwendet.
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Chapter 1

Introduction

Motivation

Trichlorofluoromethane (CCl3F, freon 11) is a very stable and nontoxic compound
which has wide industrial application especially in refrigeration. It is well known for
its role in the depletion of the ozonelayer which is a consequence of its stratospheric
photolysis leading to the occurence of chlorine radicals [1, 2, 3]. Furthermore, be-
cause of its strong absorption in the region of the ”atmospheric window” it is such
an important green house gas in the earth’s atmosphere [4, 5] that it is even pro-
posed as a ”super” green house gas which might be used to ”keep Mars warm” in
the future [6]. Its CF-stretching mode ν1 at 1113 cm−1 and the degenerate CCl-
stretching vibration at 846 cm−1 are basically responsible for this. While the first
absorption is not very specific, most fluorocarbons absorb there as well, the latter
is even used for analytical measurements [7]. CCl3F has also been a testing system
[8] for IR-multiphoton excitation [9]. Finally, CCl3F might be an interesting pro-
totype system for the general aspects of anharmonically coupled vibrational states
and intramolecular vibrational redistribution [10], [11, (b)]. For all these reasons
the theory of anharmonic vibrations and IR-Spectra of CCl3F is important.

Previous studies and the experimental point of view

Snels et al. [4] underlined the importance of understanding the infrared spectra of
freons. They have measured and partly analysed high-resolution infrared spectra for
mixtures of the isotopomers of CCl3F. For CCl3F there are 30 possible isotopomers
for all the permutations of 12C,13C,14C,35Cl,36Cl, 37Cl. Therefore even a spectrum
of only the most abundant species with 12C and 35Cl, 37Cl is already difficult to
analyse. Special techniques have been developed in order to tackle the increased
complexity of the absorption spectrum of mixtures of isotopomers. There are three,
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CHAPTER 1. INTRODUCTION 4

Figure 1.1: CCl3F is a tetrahedral chlorofluorocarbon belonging to C3V or CS Schönfliess sym-
metry group. Exact bond lengths and angles are given in table 3.1.
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most commonly used techniques:

• Enrichment of one isotopomer before infrared spectroscopy experiments [5].

• Measuring a high resolution IR-spectrum for which all lines can be assigned to
their isotopomers one to one. See for this references cited in [11].

• The recently developed method of Isotope Selective Overtone Spectroscopy
(ISOS). This is a technically more demanding technique: a given isotopomer is
rovibrationally selectively excited and then ionized by UV. The isotopomer is
then identified by mass spectrometry [12].

The theoretical point of view

Highly accurate prediction of molecular vibrations has been a challenging task since
ever in theoretical and physical chemistry. Quantum Chemistry allows nowadays
valuable estimations of electronic potential energy hyper surfaces (PES) and - using
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”theoretical spectroscopy” - the determination of all spectroscopic properties. These
can be compared to already measured quantities and thus the quality of the calcu-
lations and furthermore the reliability of the out coming predictions can be judged.
Many theoretical references will be quoted throughout this paper.

Subject of this thesis

The aim of this work is the calculation of the vibrational levels, intensities, fun-
damentals, anharmonicities and rotational constants of the isotopomers 12C35Cl3F,
12C35Cl2

37ClF, 12C35Cl37Cl2F and 12C37Cl3F using Density Functional Theory (DFT).
To calculate the full 9-dimensional (9D) potential energy hyper surface of this
molecule one would have to span a grid of n9 points. With n being the number
of points on each vibrational degree of freedom. Usually n is greater than 10. Such
a huge number of grid points is nowadays impossible to be calculated by single point
calculations. Therefore the PES has to be approximated.

In this study various approximations for full dimensional potential energy surfaces
are obtained. An inexpensive but sufficiently accurate approach to determine such
an approximation for the potential energy surface (PES) has been developed. Cou-
pling between up to three normal modes using energies, gradients and second deriva-
tives, corresponding to displacements of individual normal modes is introduced. This
coupling approach is used for C35Cl3F only and the variational code MULTIMODE
[13] is applied to this PES to calculate the vibrational levels. The perturbation
theory code SPECTRO [14] is used to determine both vibrational levels and addi-
tional spectroscopic constants and intensities. The results obtained using this PES
are compared against data coming from other, more expensive, PES’s. Furthermore
vibrational levels, rotational constants, intensities and anharmonic constants of all
the other isotopomers are determined with the help of SPECTRO.

Miani et al. [15] discuss the validity of DFT for the determination of molec-
ular spectroscopic constants in comparision to coupled cluster and Møller-Plesset
perturbation methods. They used SPECTRO to successfully determine the anhar-
monicities for the 12 atom molecule benzene. In this work SPECTRO is used for
two reasons: First it provides the possibility to obtain more information about the
quality of the surfaces by comparison to experiment and secondly spectroscopic con-
stants which are experimentally difficult to observe can be determined. Thus by the
means of the results of this present work the band positions and identification of
vibrational transitions might become complete [14]. The MULTIMODE-code has
been extensively tested by accurate calculations of rovibrational energies of many-
mode molecules [13] and several applications have already proven its suitability for
spectroscopy [16, 17, 18].



Chapter 2

Theoretical background

This chapter starts with a brief outline of the Density Functional Theory (DFT) by
which the points on the electronic potential energy hyper surfaces were obtained.
It is then described how the surfaces are used by MULTIMODE and SPECTRO
in order to obtain vibrational levels, intensities, fundamentals, anharmonicities and
rotational constants. If not indicated otherwise atomic units are used throughout
this work.

2.1 DFT

Although it was proposed by J. C. Slater [19] in 1951 to replace the so called ex-
change term in Hartree-Fock theory by a potential depending on the electron density
(as it had already been introduced by Dirac in 1930 [20]) it is only in recent years
that DFT has gained more and more reputation amongst theoretical chemists. This
might have been initiated by the introduction of the Hohenberg-kohn theorems in
1965 when the impact of DFT for theoretical chemistry became understandable for
everyone. It was at that time that the famous Nobel prize winner E. Bright Wilson

pointed out his understanding of DFT. He said that if one knew the exact electron
density ρ(r), then the cusps of ρ(r) would occur at the positions of the nuclei, and
a knowledge of the gradient of the density |∇ρ(r)| at the nuclei would give their
nuclear charges. Thus, he said, the full Hamiltonian would be known because it is
completely defined once the position and charge of the nuclei are given. So he argued
that a knowledge of the electron density was all that was necessary for a complete
determination of molecular properties. The impressive number of scientific research
papers using this method to predict ground state properties underlines this position.

The underlaying laws, principles and consequences of using DFT are well estab-
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CHAPTER 2. THEORETICAL BACKGROUND 7

lished [21]. Therefore only a short summary of the most important principles will
be given along with a description of the most common functionals including those
used in this work.

2.1.1 Basic principles of DFT

Within the Born-oppenheimer approximation the elctronic energy can be ex-
pressed as a function of the electron density. Since the electron density is itself a
function of space (r) the energy is a function of a function and not of an argument.
This is signified by calling the energy a functional and using squared brackets:

E[ρ] = Vne[ρ] + Vee[ρ] + T [ρ] (2.1)

Kohn and Sham [22] defined the exchange-correlation energy:

Exc[ρ] = Vee[ρ] − JCoul[ρ] + T [ρ] − Ts[ρ] (2.2)

which they reorganized to

Vee[ρ] + T [ρ] = Exc[ρ] + JCoul[ρ] + Ts[ρ] (2.3)

in order to obtain for the energy by substituting eq. (2.3) into eq. (2.1):

E[ρ] = Vne[ρ] + Exc[ρ] + JCoul[ρ] + Ts[ρ] (2.4)

Here Vne stands for the nucleus-electron interaction potential

Vne[ρ] = −
∑

i

∫

ρ(r)Zn

r
(i)
ne

dr (2.5)

=
∫

ρ(r)v(r)dr (2.6)

Ts is the kinetic energy

Ts[ρ] = < Ψs|
N
∑

i

(−1

2
∇2

i )|Ψs > (2.7)

=
N
∑

i

< φi| −
1

2
∇2|φi > (2.8)

and JCoul is the Coulomb potential between two electrons i and j:

JCoul[ρ] =
1

2

∫ ∫

ρ(ri)ρ(rj)

|ri − rj|
dridrj (2.9)
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Such, within the Kohn-sham definition (eq. (2.4)) the difference between T and
Ts as well as the non classical part of Vee are represented solely by the exchange-
correlation energy Exc[ρ]. The exact form of this term is for molecular systems un-
known and must be approximated. Would the exact term be known the Schrödinger

equation could be solved exactly. A whole branch of DFT related research is devoted
to the search of sensible approximations for the exchange correlation functional.

In the (non interacting) Kohn-sham reference system [22] the Hamiltonian is

Ĥs = −
∑

i

1

2
∇2

i +
∑

i

vs(ri) (2.10)

where vs is the Kohn-Sham potential which can be derived with the help of the
second Hohenberg-Kohn theorem and via an Euler-Lagrange equation:

vs(r) = v(r) +
∂JCoul[ρ]

∂ρ(ri)
+

∂Exc[ρ]

∂ρ(r)

= v(r) + jcoul + vxc(r) (2.11)

where

vxc(r) =
∂Exc[ρ]

∂ρ(r)

jcoul =
1

2

∫

ρ(rj)

|ri − rj|
drj

Here v(r) is defined within the context of eq. (2.6).

The single Slater determinantal wavefunction Ψs for N ′ non interacting electrons
in N orbitals φi is given by:

Ψ(φ1, ..., φN)s =
1

(N !)1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(1) φ2(1) ... φN(1)
φ1(2) φ2(2) ... φN(2)

...
...

...
φ1(N

′) φ2(N
′) ... φN(N ′)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.12)

The Kohn-sham model states that every electron is in its own non interacting
orbital: N ′ = N (obeying thus automatically Pauli’s exclusion principle) and that
all orbitals are part of the solution of the Schrödinger equation.

It is more convenient to use the common short-hand notation in which only the
diagonal elements of the Slater determinant occur:

|Ψs >= |φ1, φ2, ..., φN > (2.13)
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Here φi are defined as the N lowest eigenstates of the one-electron Hamiltonian:

ĥsφi =
[

−1

2
∇2 + vs(r)

]

φi = εiφi (2.14)

The density for such a system is given by ρ(r) =
∑N

i |φi(r)|2 and its integral is
∫

ρ(r)dr = N : the total number of electrons. As usual the solution of the SCF-
procedure can be easily achieved by expanding the orbitals in terms of appropriate
basis sets:

φi =
∑

α

cαiηα (2.15)

Where cαi are the coefficients of the linear combination and ηα are the basis functions.
Most common is the linear combination of gaussian type orbitals (GTO) in order to
”simulate” slater type orbitals (STO). STO would be the best functions for molecular
orbitals however the evaluation of the required integrals of GTO is much easier.

Thus - in analogy to the Hartree-Fock equations

0 =
∑

β

〈

ηα

∣

∣

∣− 1

2
∇2 + v(r) + ĵcoul −

∫

∑

i

φi(rk)φi(rl)

|rk − rl|
drlPrkrl

− εi

∣

∣

∣ηβ

〉

cβi (2.16)

where the permutation operator

Prkrl
φi(rk) = φi(rl) (2.17)

- we can write down the Kohn-Sham equations:

0 =
∑

β

〈

ηα

∣

∣

∣− 1

2
∇2 + v(r) + ĵcoul + vxc(r) − εi

∣

∣

∣ηβ

〉

cβi (2.18)

and may use a SCF-procedure.

An important and advantageous difference between eq. (2.16) and (2.18) is that
the exchange-correlation potential in the latter may be expressed multiplicatively
and locally since it does not depend on two electrons. Furthermore, if an exact ex-
pression for the exchange-correlation potential was found the exact electron density
would be known. Unlike variational quantum chemistry methods it is impossible
to systematically improve the accuracy of the exchange correlation functional. The
different approximations towards the exchange-correlation functional Exc[ρ] are rep-
resented in the form of functionals. In the following a few common functionals are
presented.
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2.1.2 Functionals in DFT

In this section any spin distributions for open shell systems are not taken into
account. It should be noted that all expressions are therefore only valid for closed
shell systems.

LDA

The Local Density Approximation (LDA) represents a model which is deduced from
an exact solution for the exchange correlation functional: the uniform electron
gas. This simple approximation was introduced in 1927 [23, 24]. The exchange-
correlation term splits up into two terms: the exchange functional and the correla-
tion functional:

Exc[ρ] = Ec[ρ] + Ex[ρ] (2.19)

And the LDA ground state energy is thus

ELDA = Ts + ELDA
x + ELDA

c (2.20)

Here the Dirac exchange formula [20] states that

ELDA
x [ρ] = −Cx

∫

ρ(r)4/3dr (2.21)

Cx =
3

4

(

3

π

)1/3

From this follows with the help of scaling relations (without demonstration):

ELDA
x [ρ] =

∫

vx(r)(3 + r · ∇)ρ(r)dr (2.22)

where

vLDA
x (r) = −

(

3

π
ρ(r)

)1/3

(2.23)

In 1980 Ceperley and Alder simulated the ground state energy of the uniform
electron gas (UEG) with the help of quantum Monte Carlo method [25]. This allowed
the determination of the remaining correlation part by simple subtraction:

Ec[ρ] = EMCsimul − Ts − Ex =: ELDA
c (2.24)

=
∫

ρ(r)εcdr (2.25)

where εc = f(rs(ρ)) = f(ρ) (2.26)
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Here the Wigner-seitz radius is explained to be rs(ρ) =
(

3
4πρ

)1/3
. The determined

f(rs) which fits best to the simulated results has the form:

εc(rs) =
A

2

[

ln[
x2

X(x)
] +

2b

Q
tan−1[

Q

2x + b
]

−
[

ln[
(x − y)2

X(x)
] +

2(b + 2y)

Q
tan−1[

Q

2x + b
]

] ]

(2.27)

A, Q, b, c, y are fit parameters. x = r1/2
s and X(x) = x2 + bx + c, X(y) analogously.

GGA

The Generalized Gradient Approximation(GGA) differs from LDA in that it takes
into account the inhomogeneity of electron density in molecules. This is performed
by introducing the gradient of electron density into the exchange functional of LDA.
There are several functionals using the GGA. The most famous pure GGA exchange
functional - B88 - was developed in 1988 by Becke [26]:

EB88
x = ELDA

x −
∑

σ

∫

ρ4/3
σ

βx2
σ

1 + 6βxσsinh−1[xσ]
dr (2.28)

Here xσ introduces the gradient:

xσ =
|∇ρσ|
ρ

4/3
σ

(2.29)

and β is a parameter which is fitted to the Hartree-fock exchange energies of six
noble gas atoms.

Lee, Yang and Parr presented also in 1988 an improved, density gradient de-
pendent correlation functional [27]. From this the following expression for a closed
shell system could be derived by Miehlich, Savin, Stoll and Preuss in 1989 [28]:

ELY P
c = − a

∫

ρ

1 + d · ρ−1/2
dr − (2.30)

ab
∫

ωρ2
[

CFρ8/3 + (5/12 − 7

12
δ)|∇ρ|2 − 11

24
ρ2|∇ρ|2

]

dr

where ω =
exp[−cρ−1/3]

1 + dρ−1/3
ρ−11/3

CF =
3 · (3π2)2/3

10



CHAPTER 2. THEORETICAL BACKGROUND 12

and δ = cρ−1/3 +
dρ−1/3

1 + dρ−1/3

The development of LYP did not take place within the approximation of the uniform
electron gas. Instead it was derived from an approximate correlation formula for
helium in the context of variational wave function based theory. The fit of the
parameters to the helium atom yielded

a = 0.04918

b = 0.132

c = 0.2533

d = 0.349

Its combination with EB88
x gives the well known BLYP functional. So, BLYP uses

Dirac’s LDA exchange functional + Becke’s correction + LYP correlation func-
tional.

Hybrid functionals

In 1993 Becke introduced nonlocality by applying Adiabatic Connection Function-
als [29, 30]. These functionals connect interacting and non interacting ground states
as a function of a parameter λ. Here the limit λ = 0 stands for the exchange con-
tribution of a Slater determinant while λ = 1 corresponds to the fully interacting
system containing exchange and correlation energy.

Exc =
∫ 1

0

〈

Ψmin,λ
n

∣

∣

∣V̂ee

∣

∣

∣Ψmin,λ
n

〉

dλ − JCoulomb[ρ] (2.31)

Ψmin,λ
n is the wavefunction which minimizes < Ψ|T̂ +λ · V̂ee|Ψ > and gives the exact

electron density ρ for a given λ. Becke derived from this the so called half-and-half

formula for the exchange correlation energy part: he approximated the λ-integration
with a two-point quadrature, i.e. evaluated the integrand only twice using the exact
exchange functional (HF) for λ = 0, the LDA exchange correlation functional for
λ = 1, respectively:

Ehalf−half
xc =

1

2
Eλ=0,HF

x +
1

2
Eλ=1,LDA

xc (2.32)

Here

EHF
x = −

∑

ij

∫ ∫

φi(r1)φj(r2)
1

r12
φj(r1)φi(r2) (2.33)
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Thus, in the half-and-half formula Ehalf−half
xc is a linear function in λ. In order

to improve the results obtained by the half-half formula Becke extended the ex-
pression for the exchange correlation functional to higher order in λ. He introduced
semiempirical coefficients and gradient corrected functionals:

Exc = EGGA
xc + cxE

HF
x (2.34)

These functionals represent a hybrid between pure density functionals for exchange
correlation and exact Hartree-Fock exchange terms. They are referred to as
DFT/HF hybrid functionals or as ACM (adiabatic connection method) functionals.
A very popular hybrid functional is B3LYP.

B3LYP

The commonly used B3LYP functional is represented by:

EB3LY P
xc = AELDA

x + (1 − A)EHF
x + BEB88

x

+(1 − C)ELDA
c + CELY P

c (2.35)

A = 0.8, B = 0.72, C = 0.81

Where all functionals are mentioned above and the parameters are fitted semi-
empirically.

2.1.3 Functionals used in this work

B97-1

The B97-1 functional which has been used in this work is a hybrid functional which
had been presented by Becke in 1997 [43]. It is constructed starting from eq. (2.34):

EB97−1
xc = EGGA

xc + cxE
HF
x

= EGGA
x + EGGA

c + cxE
HF
x (2.36)

The hybrid parameter was fitted to be cx = 0.21. Becke basically approximated the
GGA terms in eq. (2.36) by a polynomial fit of second order in density dependent
terms:

EGGA
x =

∑

σ

∫

eLDA
xσ (ρσ)gx,m(s2

σ)dr (2.37)

here σ = α or β-spin
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gx,m(s2
σ) is the polynomial representation:

gx,m(s2
σ) =

m=2
∑

i=0

cxσ,iu
i
xσ(s

2
σ) (2.38)

where uxσ(s
2
σ) = γxs

2
σ

1

1 + γxs2
σ

(2.39)

and sσ =
|∇ρ|
ρ4/3

The coefficients cxσ,i and γ are semi-empirical parameters which were fitted to a set
of 93 molecules. Within B97-1 they were found to be:

cxσ,0 = 0.789518 cxσ,1 = 9.573805 cxσ,2 = 0.660975

γx = 0.004

The gradient corrected correlation functional in B97-1 consists of two parts

EGGA
c =

∑

σ

Ec,σσ + Ec,αβ

which are described as follows:

Ec,σσ =
∫

eLDA
c,σσ (ρσ)gcσσ(s2

σ)dr (2.40)

where eLDA
c,σσ (ρσ) = eLDA

c (ρσ, 0)

and where in analogy to the exchange part

gc,σσ(s2
σ) =

m=2
∑

i=0

cc,σσ,iu
i
c,σσ (2.41)

with uc,σσ = γc,σσs2
σ

1

1 + γc,σσs2
σ

The coefficients yielded from the fits are

ccσσ,0 = 0.0820011 ccσσ,1 = 2.71681 ccσσ,2 = −2.87103

γc,σσ = 0.2

For the correlation between α and β spin electrons Becke derived

Ec,αβ =
∫

eLDA
c,αβ (ρα, ρβ)gc,αβ(s

2
avg)dr (2.42)

eLDA
c,αβ (ρα, ρβ) = eLDA

c (ρα, ρβ) − eLDA
x (ρα, 0) − eLDA

c (0, ρβ)
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gc,αβ(s
2
avg) =

m
∑

i=0

cc,αβ,iu
i
c,αβ

with uc,αβ = γc,αβs2
avg

1

1 + γc,αβs2
avg

, s2
avg =

1

2

(

s2
α + s2

β

)

The semi-empirical parameters are:

ccαβ,0 = 0.955689 ccαβ,1 = 0.788552 ccαβ,2 = −5.47869

γc,αβ = 0.006

PBE0

PBE0 [31, 32] is the other functional which has been used in this work. This is a
one parameter hybrid functional which uses 3/4EPBE

x and 1/4EHF
x as the adiabatic

connection thus constituting a HF/DF functional.

EPBE
x =

∫

F PBE
x ρ4/3dr (2.43)

where

F PBE
x =

bx2

1 + ax2
+ 1 (2.44)

with b = 0.00336, a = 0.00449 and x = |∇ρ|

ρ4/3 as semi-empirical parameters.

The actual PBE0 exchange correlation combines the EGGA
xc with EPBE

x and EHF
x :

EPBE0
xc = EPBE

xc +
1

4
(EHF

x − EPBE
x ) (2.45)

where
EPBE

xc = ELDA
x + EPBE

x + EPBE
c (2.46)

ELDA
x is defined in eq. (2.21), EPBE

x is given above (eq. (2.43)) and the PBE
correlation term is

EPBE
c =

∫

ρ
(

εunif
c (rs, ζ) + HPBE(rs, ζ, t)

)

dr (2.47)

HPBE(rs, ζ, t) = γφ3ln

[

1 +
β

γ
t2
(

1 + At2

1 + At2 + At4

)]

(2.48)

here γ = 0.031091

and φ =
1

2

(

[1 + ζ ]2/3 + [1 − ζ ]2/3
)

where ζ =
ρα − ρβ

ρ
(2.49)
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and t =
|∇ρ|

4(3/π)1/6φρ7/6

and A =
β

γ

1

(exp[−εunif
c

γφ3 ] − 1)

Eq. (2.49) becomes zero in the case of a closed shell molecule. Thus the final
expression for the PBE0 functional is:

EPBE0
xc = ELDA

x +
3

4
EPBE

x + EPBE
c +

1

4
EHF

x (2.50)
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2.2 Spectroscopic programs

2.2.1 MULTIMODE

C35Cl3F belongs to the C3v symmetry group. However, in order to deal with the
problem MULTIMODE works within the Cs symmetry group. The components of
the degenerate modes are treated independently. The Watson-hamiltonian [33]
is used in normal coordinates. It is given in atomic units by

Ĥ =
1

2

3
∑

αβ

(Ĵα− π̂α)µαβ(Ĵβ − π̂β)− 1

2

N
∑

k

∂2

∂Q2
k

− 1

8

3
∑

α

µαα +V (Q1, Q2, ..., QN) (2.51)

where

• Ĵα is the component of the total angular momentum,

• π̂α is the component of the vibrational angular momentum:

π̂α = −
∑

k,l

ζα
k,lQk

∂

∂Ql
(2.52)

• µαβ is a component of the effective reciprocal inertia tensor and

• V (Q1, Q2, ..., QN) is the total potential electronic energy as a function of the
normal modes Qi.

In MULTIMODE, matrix elements of the difficult first term in eq. (2.51) are
evaluated with at most four normal coordinates being non-zero. That means that
while evaluating the first term for maximal four normal modes (e.g. Qi, Qj , Qk, Ql)
all the other normal modes Q1...h,m...N are set to zero.

The potential energy depending on N modes may be expressed by the following
hierarchical expression:

V (Q1, Q2, ..., QN) =
N
∑

i=1

V (1)(Qi) +
N
∑

i6=j

V (2)(Qi, Qj)

+
N
∑

i6=j 6=k

V (3)(Qi, Qj, Qk) (2.53)

+
N
∑

i6=j 6=k 6=l

V (4)(Qi, Qj, Qk, Ql) + ...

∑

i6=j
means that summation is carried out over all i and j except for i = j:

∑

i6=j
=

∑

i

∑

j
(1−δij),

∑

i6=j 6=k
and

∑

i6=j 6=k 6=l are defined analogously. δij is the Kronecker symbol.
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In eq. (2.53) the number of simultaneously coupled normal modes in the potential
energy hyper surface is increased with each additional term.

It was demonstrated in [34, 16] that an expansion up to V (4) is sufficient for many
small molecules as H2CN, N2CS, H2CS as well as for methane and its isotopomers.
Therefore, also in the case of CCl3F the potential energy in MULTIMODE is con-
fined to the expansion up to V (4). In the following this potential energy will be
denoted by V (Q):

V (Q) :=
N
∑

i=1

V (1) +
N
∑

i6=j

V (2) +
N
∑

i6=j 6=k

V (3) +
N
∑

i6=j 6=k 6=l

V (4) (2.54)

Thus the number of grid points in MULTIMODE is proportional to n4. n being the
number of points per normal mode (see also section 2.3.2)

MULTIMODE can carry out vibrational self consistent (VSCF) and vibrational
configuration interaction (VCI) calculations. The VSCF algorithm had been imple-
mented in 1998 by Carter et al. [34]. It is used first to obtain appropriate polyno-
mials in normal coordinates. The excitations of the VSCF vibrational ground state
form the CI basis for the VSCF-CI calculations.

Vibrational Self-Consistent-Field

The problem of solving the vibrational wave-function can be approached by pro-
ceeding in analogy to the electronic HF SCF theory (Hartree-fock and Self-
consistent-field theory). This was done in 1986 by J. M. Bowman in reference
[35]. Bowman first introduces a seperation of the vibrational wave function for the
quantum state |n1, n2, ..., nN > by stating:

Ψn1,n2,...,nN
(Q1, Q2, ..., QN) =

N
∏

i=1

φni
(Qi) (2.55)

where φni
(Qi) is only a function of the single normal coordinate Qi (here ni

represents no longer the number of grid points but the quantum number of the
vibrational state of normal mode i). These 1D functions are expanded in a primitive
basis of harmonic-oscillator functions. Thus in MULTIMODE the coupling between
the normal modes is introduced exclusively by the Hamiltonian.
The variationally best form of this product function is - in analogy to HF-theory -
found by a Self-Consistent-Field procedure. There is no need for antisymmetrisation
since the modal wave functions are distinguishable.
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Furthermore the full Hamiltonian is approximated by

H =
N
∑

i

[Ti + V (Qi)] + Tc,i + Vc(Q1, ..., QN) (2.56)

where

• V (Qi) is a 1D cut of the electric PES (i.e. V (Qi) = V (Qi, Qj 6=i = 0)) and

• Vc(Q1, ..., QN) = V (Q)−
N
∑

i
V (Qi) the difference between the full potential and

the sum of all 1D cuts constituting such the complicated simultaneous coupling
of all modes.

• Ti corresponds to the second derivative ( ∂2

∂Q2

i
) of mode i in the kinetic energy

operator in eq. (2.51).

• Tc,i stands for the Coriolis coupling operator:

Tc,i =
1

2

∑

αβ

π̂i,αµαβπ̂i,β − 1

8

∑

α

µαα (2.57)

• π̂i (eq. (2.52)) is the vibrational angular momentum operator, which depends
on two normal coordinates linked by the Coriolis coupling constant ζ (compare
eq. (2.73)).

Like in HF-theory one can now replace the term which accounts for the influence
of all other modes by an averaging term which is only dependent on the considered
mode. So, the actual set of VSCF eigenvalue equations consists of expressions like
the following for a given normal mode i:

0 =
[

Ti + V (Qi) + 〈
N
∏

j=1

φnj
(Qj)|Tc,i

+ Vc(Q1, ..., QN)|
N
∏

j=1

φnj
(Qj)〉j 6=i − εi

]

φni
(Qi) (2.58)

In the matrix element
〈

N
∏

j=1

φnj
(Qj)|Tc,i + Vc(Q1, ..., QN)|

N
∏

j=1

φnj
(Qj)

〉 ∣

∣

∣

∣

∣

j 6=i
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integration is carried out over all coordinates except the ith one. Coupling between
normal mode i and all the remaining normal modes is thus averaged and exclusively
introduced by these matrix elements. They are obtained with the help of the Gauss-
Hermite quadrature which is a common numerical integration method [36]. Initially
a coupling potential Vc is evaluated and a zero order set of modal wave functions
φo

i is chosen. Then, the eigenproblem is solved and new modal wave functions and
eigenvalues are obtained. This is iterated until convergence for the eigenvalues is
obtained.

After convergency, the expectation value of the VSCF state Ψn1,n2,...,nN
can be

evaluated:

< Ψn1,n2,...,nN
|H|Ψn1,n2,...,nN

>= En1,...,ni,...,nN

=

〈

N
∏

i=1

φni
(Qi)

∣

∣

∣

∣

∣

N
∑

i

[Ti + V (Qi)] + Tc,i + Vc(Q1, ..., QN)

∣

∣

∣

∣

∣

N
∏

i=1

φni
(Qi)

〉

=

〈

N
∏

i=1

φni
(Qi)

∣

∣

∣

∣

∣

N
∑

i

[Ti + V (Qi)]

∣

∣

∣

∣

∣

N
∏

i=1

φni
(Qi)

〉

+

〈

N
∏

i=1

φni
(Qi)

∣

∣

∣

∣

∣

Tc,i + Vc(Q1, ..., QN)

∣

∣

∣

∣

∣

N
∏

i=1

φni
(Qi)

〉

=
N
∑

i=1

[

εi −
〈

N
∏

i=1

φni
(Qi)

∣

∣

∣

∣

∣

Tc,i + Vc(Q1, ..., QN)

∣

∣

∣

∣

∣

N
∏

i=1

φni
(Qi)

〉]

+

〈

N
∏

i=1

φni
(Qi)

∣

∣

∣

∣

∣

Tc,i + Vc(Q1, ..., QN)

∣

∣

∣

∣

∣

N
∏

i=1

φni
(Qi)

〉

=
N
∑

i=1

εi − (N − 1)

〈

N
∏

i=1

φni
(Qi)|Tc,i + Vc(Q1, ..., QN )|

N
∏

i=1

φni
(Qi)

〉

(2.59)

See also [35] for more details of the above derivations.

Virtual-CI

The solution of the eigenvalue equations (2.58) by iteration yields a complete set of
virtual modal wave functions as well as the best eigenstates for the defined basis.
Using this complete set of modals one can construct wavefunctions for vibrationally
excited states and use them as an expansion basis for CI (configuration interaction)
which converge to the exact vibrational eigenvalues and eigenfunctions of the full
Hamiltonian. As for the electronic CI, the full CI-problem is approximated by
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single, single and double, single, double and triple etc. excitations. MULTIMODE
goes up to four mode excitations.

VSCF-CI

There is a more advanced technique which uses selected fundamentals and excited
states optimised at the SCF level as basis in CI-calculations. This overcomes a lim-
itation of the VSCF/VSCF-CI because it allows the mixing of energetically close
lying states of same symmetry. This would have been symmetry-forbidden if the to-
tal wavefunction was simply defined as a product of the single modal wavefunctions.
The disadvantage of this method is that the chosen basis is no longer orthonormal
since each state has been minimized on its own. Thus, orthogonalization has to be
carried out additionally what makes this method computationally more demanding.

2.2.2 SPECTRO

Most of the equations presented in this section are explained in detail in reference
[37]. The expressions and approximations used by SPECTRO are elucidated in
length in reference [14, (a)].

SPECTRO applies second-order perturbation theory [37] which uses a Taylor
series expansion of the potential energy function up to fourth order:

V =
1

2

∑

i

φiiq
2
i +

1

6

∑

ijk

φijkqiqjqk +
1

24

∑

ijkl

φijklqiqjqkql (2.60)

where φ are the harmonic force constants while the φii = ωi denote the harmonic
vibrational frequencies (since this is a normal coordinate space all φi and φij are
equal zero by definition) and the qi are dimensionless reduced normal coordinates
being related to normal coordinates Qi by:

qi = Qi2π

√

c ωi

h
(2.61)

where c is the speed of light in vacuum and h the Planck constant. As the poten-
tial energy function described in MULTIMODE is expressed in the Cs symmetry
group, also in SPECTRO all isotopomers of CCl3F are considered as asymmetric
top systems. This means that in eq. (2.60) sums are running also over the individ-
ual components of degenerate normal modes. Normally it is of advantage to exploit
symmetry extensively in order to decrease the number of points on the PES being
necessary to calculated and in order to impose more accuracy within the fitting
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procedure of the potential energy for symmetric degenerate normal modes. Already
the knowledge that the molecule belongs to Cs symmetry group reduces the number
of points for the concerned normal modes by a half, for C3v by two thirds and so
forth. In the simple isotropic case of a C∞v there would be no angle dependency
and all normal coordinates qiconc concerned by symmetry can be reduced to qred via
Pythagoras:

qred =
√

∑

iconc

q2
iconc

(2.62)

However, in the case of Cs there is an angle dependency but rotation of θ = π has
to yield the same q. One can thus write:

qred =
√

q2
1conc

+ q2
2conc

· cos[2 · θ] (2.63)

where θ is the angle between two concerned normal modes: θ = arctan[q1/q2]. For
CCl3F there is C3v symmetry which means that the results for rotations of θ = 4π

3
have to be invariant. Thus:

qred =
√

q2
1conc

+ q2
2conc

+ q2
3conc

· cos[3θ
2

] (2.64)

If the last expression is incorporated into eq. (2.60) symmetry is automatically im-
posed within the fitting procedure generating the φ and the number of variables
is minimised meaning that there are less points to calculate. This means that if
only Cs symmetry is used for a C3v symmetric molecule one does not only have to
calculate more points but also to ”tell” the fitting procedure which generates the φ
that some of the fitted points are symmetrically equivalent. Otherwise the fitting
procedure will break the symmetry of the forcefield and annihilate degeneracy.

The vibrational energy levels can be given by an expansion up to second order
([37]):

E(n1, ..., nN)asym =
∑

s

ωs(nk +
1

2
) +

∑

s≤s′
xasym

ss′ (ns +
1

2
)(n′

s +
1

2
) + ... (2.65)

ω are the harmonic frequencies explained above and xss′ are the anharmonic con-
stants which will be defined in the following. A complete expansion would automat-
ically account for all symmetries. If the expansion is only used to a certain order a
symmetry adopted expression would be theoretically more appropriate. This prob-
lem is treated in more detail later on in this chapter.
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Fundamentals, anharmonic constants, rotational constants and transition intensities

within SPECTRO

The fundamental frequency νi corresponding to a given normal mode i is

νi = ωi + 2xii +
1

2

∑

k 6=i

xki (2.66)

its overtone is:
n νi = n (νi) + n xii (2.67)

where the (νi) means the value for the fundamental νi. The combination is:

(νi + νj) = (νi) + (νj) + xii + xjj + xij (2.68)

and anharmonicities are given by [?]:

xss =
1

16
φssss −

1

16

∑

s′
(φsss′)

2

(

8ω2
s − 3ω2

s′

ωs′(4ω2
s − ω2

s′)

)

(2.69)

xss′ =
1

4
φsss′s′ −

∑

s′′

φsss′′φs′s′s′′

4ωs′′
−
∑

s′′

(φss′s′′)
2ωs′′(ω

2
s + ω2

s′ − ω2
s′′)

2Ωss′s′′

+
∑

β

Bβ
eq[ζ

β
ss′]

2
[

ωs

ωs′
+

ωs′

ωs

]

(2.70)

where

Ωss′s′′ = (ωs + ωs′ + ωs′′)(−ωs + ωs′ + ωs′′)(ωs − ωs′ + ωs′′)(ωs + ωs′ − ωs′′) (2.71)

and Bβ
eq are the equilibrium rotational constants for β: one of the principal inertia

axes.
The rotational constants are proportional to the reciprocal moments of inertia,

given by

Bβ
eq =

h̄

4πcIβ
eq

(2.72)

The Coriolis constants ζ are defined by the l-matrix elements (see section 2.3.1 and
3.4):

ζx
ij =

∑

i

ljyil
k
zi − ljzil

k
yi (2.73)

i, j and k denote normal modes. Furthermore rotational constants depend on the
degree of vibrational excitations. This can be approximated by:

Bβ
n = Bβ

eq −
∑

i

αβ
i (nk +

1

2
) (2.74)
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Here the α constant is a function of the coriolis constant, of the harmonics and - as
Bβ

eq is - of the moment of inertia Iβ: αβ
i = f(ωi, ζi, Iβ). The explicit expression can

be found in reference [37].
Amongst the quartic terms in eq. (2.70), only the diagonal φiiii and semi-diagonal
φiijj terms are required to determine the vibrational levels. It is possible to calculate
the quartic and cubic terms by analytic evaluation of the second derivatives at var-
ious geometries. The latter are obtained by finite displacement δq from equilibrium
geometry.

φijk =
φjk(+δqi) − φjk(−δqi)

|2δqi|
(2.75)

φiijj =
φjj(+δqi) + φjj(−δqi) − 2φjj(δqi = 0)

|δqi|2
(2.76)

For each normal mode a step δq corresponding to maximal 0.008 Bohr is used. This
seems to be sufficiently small and had been tested by convergence for NH+

3 in [18].

The anharmonic corrections which lead to the electric dipole intensities are ex-
plained in detail by Handy et al. [14] (b). The electric dipole moment surface
pertaining to the potential energy function in eq. (2.60) expanded up to cubic
terms is:

µα = µα
eq +

∑

i

µα
i qi +

1

2

∑

i≤j

µα
ijqiqj

+
1

6

∑

i≤j≤k

µα
ijkqiqjqk (2.77)

where α stands for the spatial orientation of the dipole (x, y, z), µα
eq denotes the

static electric dipole moment and µα
i the electric dipole moment of normal mode i.

The transition dipole moment for a one-quantum vibrational transition is expressed
as

< ni, nj , ...|µα|ni + 1, nj, ... > =
√

ni + 1(µα
i01 + Mα

i ni +
∑

j 6=i

Mα
j nj)

where

µα
i01 = < 0, 0, ...|µα|ni = 1, 0, ... > (2.78)

µα
i01 represents the transition dipole moment of the fundamental i including the

anharmonic corrections. Due to the assumptions of perturbation theory Mα
i and

Mα
j are much smaller. They influence only the intensities of the hot-band and

stimulated emission transitions which are much less intense than the fundamental.
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Neglecting all Mα
i leads to the practical expression for the measured integrated

absorbance of a fundamental band:

Ai = A(νi)

=
∑

ninj ...

Ani+1,nj ...
ni,nj ... (2.79)

=
8π3NAgiνiµ

2
i01

(4πǫ0)3hc
(2.80)

=

[

2.507
km

(mol cm−1D2)

]

giνiµ
2
i01 (2.81)

where gi is the degeneracy of normal mode i and

µ2
i01 =

∑

α=x,y,z

|µα
i01|2 (2.82)

The integrated band strength may be expressed in several units:

Gi =
∫

band

σ(ν)

ν
dν (2.83)

=
8π3giµ

2
i01

(4πǫ0)3hc
(2.84)

=
Ai

νiNA
(2.85)

Gi ≃ 16.6054
Ai/

km
mol

νi/cm−1
pm2 (2.86)

However, this expression does not take into account the Boltzmann weighted pop-
ulation for the lowest vibrational states. This may be problematic in the case of
low lying fundamentals and high temperatures. Then the measured integrated band
strength includes hot band transition while Gi in eq. (2.86) accounts exclusively for
the fundamentals. Therefore the above expressions are correct only for transitions
at 0K. For temperatures higher than 0K one has to introduce a correction by a
Boltzmann factor:

Geff
i = Gi

[

1 − giexp
[

− βhcνi

]

]

, β =
1

kT
(2.87)

Asymmetric and Symmetric Top Hamiltonian

The diagonal elements of the actually effective Hamiltonian in the harmonic oscil-
lator representation yield for the vibrational energies of symmetric top species such
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as the C3v symmetric molecules C35Cl3F or C37Cl3F according to [37]:

E(n, l)sym =
∑

s

ωs(ns +
1

2
) +

∑

s≥s′
xsym

ss′ (ns +
1

2
)(ns′ +

1

2
)

+
∑

t

ωt(nt + 1) +
∑

t≥t′
xsym

tt′ (nt + 1)(nt′ + 1)

+
1

2

∑

s,t

xsym
st (ns +

1

2
)(nt + 1) +

∑

t≥t′
gtt′ ltlt′ (2.88)

constituting such an expression which takes into account the degeneracy and its
interactions:

• s is standing for a non-degenerate normal mode

• t for a degenerate normal mode

• while n and l are the quantum numbers associated with vibration and vibra-
tional angular momentum, respectively.

While going from eq. (2.65) to (2.88) an increase in symmetry should not af-
fect the correct description i.e. the same eigenvalue spectrum is obtained for both
expressions. But if one is interested in the anharmonic constants of the more com-
pact expression (2.88) the most straight forward would be to use the symmetric top
Hamiltonian. In this case one would have to express the xsym and g as functions
of the force constants. In principle the force field is independent of the choice of the
Hamiltonian since the PES of any molecule does not depend on the observer’s pic-
ture of the molecule’s symmetry. However the fitting procedure which leads to the
effective Hamiltonian should respect symmetry. According to [37] the following
relations link the force field with the vibrational spectrum: For the non degenerate
modes s.

xss =
1

16
φssss −

1

16

∑

s′
(φsss′)

2

[

8ω2
s − 3ω2

s′

ωs′(4ω2
s − ω2

s′)

]

(2.89)

xss′ =
1

4
φsss′s′ −

∑

s′′

φsss′′φs′s′s′′

4ωs′′
−
∑

s′′

(φss′s′′)
2ωs′′(ω

2
s + ω2

s′ − ω2
s′′)

2Ωss′s′′

+B(z)
e (ζ

(z)
ss′ )

2
[

ωs

ωs′
+

ωs′

ωs

]

(2.90)

For the non degenerate/degenerate interactions st:

xst =
1

4
φsstata −

1

4

∑

s′

[

φ2
sss′φ

2
tatas′

ωs′

]

− 1

2

∑

t′

[

φ2
stat′a

ωt′(ω
2
s + ω2

t − ω2
t′)

Ωstt′

]
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+Bx

[

(ζ
(x)
sta )2 + (ζ

(y)
sta)2

]

[

ωs

ωt
+

ωt

ωs

]

(2.91)

The diagonal anharmonic constants between degenerate modes t are:

xtt =
1

16
φtatatata −

1

16

∑

s

[

φ2
stata(8ω

2
t − 3ω2

s)

ωs(4ω
2
t − ω2

s)

]

− 1

16

∑

t′

[

φ2
tatat′a

(8ω2
t − 3ω2

t′)

ωt′(4ω2
t − ω2

t′)

]

(2.92)

and

gtt = − 1

48
φtatatata −

1

16

∑

s

[

φ2
stataωs

4ω2
t − ω2

s

]

+
1

16

∑

t′

[

φ2
tatat′a

(8ω2
t − ω2

t′)

ωt′(4ω2
t − ω2

t′)

]

+ Bz(ζ
(z)
tatb)

2 (2.93)

The off diagonal elements of the symmetric top anharmonic constants matrix are:

xtt′ =
1

8
(φtatat′at′a + φtatat′at′

b
) − 1

4

∑

s

[

φ2
stataφ

2
st′at′a

ωs

]

−1

4

∑

s

[

φ2
stat′a

ωs(ω
2
t + ω2

t′ − ω2
s)

Ωstt′

]

− 1

2

∑

t′′

[

φ2
tat′at′′a

ωt′′(ω
2
t + ω2

t′ − ω2
t′′)

Ωtt′t′′

]

+
[

1

2
Bz(ζ

(z)
tat′

b
)2 + Bx(ζ

(y)
tat′a

)2
] [

ωt

ωt′
+

ωt′

ωt

]

(2.94)

and

gtt′ = −1

2

∑

s

[

φ2
stat′a

ωsωtωt′

Ωstt′

]

+
∑

t′′

[

φ2
tat′at′′a

ωtωt′ωt′′

Ωtt′t′′

]

− 2Bx(ζ
(y)
tat′a

)2

+Bz(ζ
(z)
tat′

b
)2 + 2Bzζ

(z)
tatbζ

(z)
t′at′

b
(2.95)

Thus, all anharmonic constants within the asymmetric and the symmetric top rep-
resentation are accessible if the force field of the symmetric top is known. Un-
fortunately, in SPECTRO the routines for symmetric tops having more than one
degenerate mode do not work. To correct these is not trivial and would be beyond
the scope of this study.

An alternative way would be to reduce the number of parameters by transforming
all xasym

ss′ into their corresponding xsym
ss′ ,xsym

st ,xsym
tt′ and gtt′ . In reference [50] this has

been done for benzene (belonging to the D6h symmetry group). In order to check
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if these transformations are equally legitimate for the case of our C3v molecule one
might think of a method which is straight forward: There is the condition that
expression (2.65) and (2.88) have to yield the same transitional energy for a given
excitation. This is easily obtained by subtracting the zeropoint energies E0 from
the corresponding descriptions and setting them equal.
Formally one can rewrite eq. (2.65) or (2.88) by vector multiplication uniting all
quantum numbers in one vector (~n) and all harmonic frequencies and anharmonic
constants in another one (~c):

Easym = ~nasymT

~c asym

where

~c asym =



















































ω1
...

ωN

x11
...

x1N

x22
...

x2N
...

xNN



















































and ~nasym =













































n1 + 1/2
...

nN + 1/2
(n1 + 1/2) ∗ (n1 + 1/2)
(n1 + 1/2) ∗ (n2 + 1/2)

...
(n1 + 1/2) ∗ (nN + 1/2)
(n2 + 1/2) ∗ (n2 + 1/2)

...
(nN + 1/2) ∗ (nN + 1/2)













































in the case of the asymmetric top description. If the zeropoint energy had al-
ready been accounted for and the analogous had been done for the symmetric top
description we could write:

0 = (Easym − Easym
0 ) − (Esym − Easym

0 ) = ~nasymT

~c asym − ~nsymT

~c sym

= (~nasymT

, ~nsymT

)

(

~c asym

−~c sym

)

(2.96)

This equation has to be valid for all physically possible combinations of quantum
numbers within the two descriptions. The quantum number vector in eq. (2.96) can
thus be enlarged to become a m × m matrix where m is the number of elements in
~c. One obtains:





~nasym
T

, ~nsym
T

...
...





(

~c asym

−~c sym

)

= ~0 (2.97)
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where [~nasym, ~nsym] denotes the quantum number matrix.
As mentioned above, to compare the same vibrational excitations involving de-

generate modes t it is crucial that the rows in the quantum number matrix consist of
physically possible combinations. Meaning that not only the selection rules (l going
from −n to n in integer steps of 2) have to be respected but also that a given com-
bination of quanta in the asymmetric top picture has to be combined with the right

combination of quanta in the symmetric top picture. One could think of directly
correlating the combinations following an evident scheme:

nsym
t lt
1 1
” −1
2 2
” 0
” −2
3 3
” 1
” −1
” −3
...

...

↔

nta ntb

1 0
0 1
2 0
1 1
0 2
3 0
2 1
1 2
0 3
...

...

Where a and b denote the two components of a given degenerate mode. However,
this would be a too simplistic correlation since it does not account for symmetry.
Considering for example nsym

t = 2 one would expect A1 for l = 0 and E for l = 2
and -2 as irreducible representations within the C3v symmetric representation. E
correlates to a combination of A′ and A′′ in the Cs group. Thus, by assigning A′ and
A′′ to nta or ntb, respectively, one finds two A′ and one A′′ representations which
have to be correlated. It is not evident which of the A′ representations stays alone
and which one joins the E representation:

Γirr nsym
t lt

E 2 2
E 2 −2
A1 2 0

↔
Γirr nta ntb

A′′ 1 1
A′ 2 0
A′ 0 2

The following equations have been used (from symmetry group theory):

A′′ × A′′ = A′

A′ × A′ = A′

A′′ × A′ = A′ × A′′ = A′′
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Thus, only one combination of quanta can clearly be assigned in the case of nsym
t =

2: nta =ntb = 1 (A′′) and E have to be strictly degenerate, meaning that it is not
clear if l is positive or negative.

Expression (2.97) is a typical set of linearly independent and dependent equa-
tions. According to a given correlation one is free to choose the quantum number
elements of the matrix in this expression. The components of ~c sym which are un-
known can thus be easily obtained by successive substitution (see chapter 3.5 and
Appendix A).
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2.3 The Coupling Approach

In this approach the form of the potential energy surface is restricted to an expression
which takes into account coupling between up to three normal modes:

V (Q) :=
N
∑

i=1

V (1)(Qi) +
N
∑

i6=j

V (2)(Qi, Qj) +
N
∑

i6=j 6=k

V (3)(Qi, Qj , Qk) (2.98)

where N is the total number of normal modes. The notations
∑

i6=j
etc. have already

been introduced in chapter 2.2.

2.3.1 Fitting the Derivatives

Polynomial series expansions can be used to calculate potential energies and their
first and second derivatives, at discrete points on the normal modes. Specifically
the representation is:

9
∑

i=1

V (1)(Qi) ≈
9
∑

i=1

fi(Qi) (2.99)

9
∑

i6=j

V (2)(Qi, Qj) ≈
9
∑

i6=j

(

Qifij(Qj) + Q2
i fiij(Qj)

)

(2.100)

9
∑

i6=j 6=k

V (3)(Qi, Qj, Qk) ≈
9
∑

i6=j 6=k

QiQjfijk(Qk) (2.101)

The fourth and higher order terms are all set to zero.
Here fi(Qi) is a series expansion up to order 15 which is fitted to 16 potential

energy points E(Qi) calculated for 16 different values of Qi while all other Qj 6=i = 0.

fi(Qi) :=
15
∑

n=0

an,iQ
n
i (2.102)

fij(Qj) is analogously defined as a series expansion up to order 15 fitted to 16
energy gradients calculated at the same values on Qi as the energies, evaluated at

all other normal modes Qi6=j = 0:
∂E(Qj)

∂Qi

∣

∣

∣

Qj ;Qi=0

fij(Qj) :=
15
∑

n=0

bn,ijQ
n
j (2.103)
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fijk(Qk) is a series expansion up to order 15 being fitted to 16 second derivatives

on Qi, evaluated at all other points Qi6=k = Qj 6=k = 0: ∂2E(Qk)
∂Qi∂Qj

∣

∣

∣

Qk;Qi=Qj=0

fijk(Qk) :=
15
∑

n=0

cn,ijkQ
n
k (2.104)

In equation (2.99) and (2.100) the terms b0,ii of fij are constant and removed
before insertion into the potential energy. For a deduction of this see below.

Gradients and second derivatives of the energy with respect to normal coordi-
nates are obtained from gradients and second derivatives with respect to cartesian
coordinates using the l-matrix. Since the derivatives are given by CADPAC only
in cartesian coordinates transformations of each normal mode and for every nucleus
have to be carried out with the help of the l-matrix. The displacement for the
normal mode i and nucleus α in the cartesian coordinate x is:

xi,α − x
(0)
i,α =

l
(x)
i,αQi

m
1/2
α

(2.105)

where x(0) corresponds to the equilibrium position.
The first and the second derivatives with respect to certain normal modes j and

k can be expressed as follows

∂V (Qi)

∂Qj

=
∑

α

∂V (Qi)

∂xj,α

∂xj,α

∂Qj

=
∑

α

∂V (Qi)

∂xj,α

l
(x)
j,α

m
1/2
α

(2.106)

∂2V (Qi)

∂Qj∂Qk
=

∑

α

∑

β

∂2V (Qi)

∂xj,α∂Qk

l
(x)
j,α

m
1/2
α

(2.107)

=
∑

α

∑

β

∂2V (Qi)

∂xj,α∂xk,β

l
(x)
k,β

m
1/2
β

l
(x)
j,α

m
1/2
α

(2.108)

For y and z analogously.

The potential energy surface determined as described in this section is called ’A’.
It is only generated for the isotopomer C35Cl3F and not for the other isotopomers
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because of the computational costs (see also the beginning of ’Computational de-
tails’). It approximates the expansion for the potential energy (eq. (2.51)) only up
to V (3).

Deduction of the Coupling Approach potential

A 3D PES would be, according to eq. (2.53) and eq. (2.99-2.104):

V (Qi, Qj, Qk) =
[

∑

n

an,iQ
n
i +

∑

n

an,jQ
n
j +

∑

n

an,kQ
n
k

]

+

[

Qi

∑

n

bn,jiQ
n
j + Qi

∑

n

bn,kiQ
n
k + Qj

∑

n

bn,ijQ
n
i

+Qi

∑

n

bn,iiQ
n
i + Qj

∑

n

bn,jjQ
n
j + Qk

∑

n

bn,kkQ
n
k

]

+

[

QiQj

∑

n

cn,kijQ
n
k + QkQi

∑

n

cn,jkiQ
n
j + QjQk

∑

n

cn,ijkQ
n
i

]

+

[

Q2
i

∑

n

cn,jiiQ
n
j + Q2

i

∑

n

cn,kiiQ
n
k + Q2

j

∑

n

cn,ijjQ
n
i

+Q2
j

∑

n

cn,kjjQ
n
k + Q2

k

∑

n

cn,ikkQ
n
i + Q2

k

∑

n

cn,jkkQ
n
j

]

+

[

Q2
i

∑

n

cn,iiiQ
n
i + Q2

j

∑

n

cn,jjjQ
n
j + Q2

k

∑

n

cn,kkkQ
n
k

]

(2.109)

Here, the first bracket would correspond to eq. (2.99), the first three terms of the
second and the fourth bracket would correspond to eq. (2.100), the third bracket
would correspond to eq.(2.101). The last three terms of the second bracket and the
fifth bracket are redundant because they do not contain information which is not
already included in the first bracket. It is reminded of the fact that the coefficients
bnik 6= bnij but that cnjki = cnjik ∀i 6= k (Schwartz’ rule). Generalizing expres-
sion (2.109) leads to the potential energy hyper surface used within the Coupling
Approach for any system with N vibrational degrees of freedom:

V (Q1, ..., QN) =
N
∑

i=1

∑

n

an,iQ
n
i +

N
∑

i=1

Qi

∑

j≥i

∑

n

bn,jiQ
n
j
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+
N
∑

i=1

Qi

∑

j≥i

Qj

∑

k≥j

∑

n

cn,ijkQ
n
k (2.110)

The coefficients of the series expansions are obtained by a fitting procedure which is
explained in chapter 2.3.1 ’Fitting the Derivatives’. The PES is thus approximated
by an expression which reminds of a Taylor expansion:

V (Q1, ..., QN) =
∑

i

V (Qi, Qj 6=i = 0) +
∑

i

Qi

∑

j≥i

∂Qi
V (Qj , Qi6=j = 0)

+
∑

i

Qi

∑

j≥i

Qj

∑

k≥j≥k

∂2
QiQj

V (Qk, Qi6=k = Qj 6=k = 0) (2.111)

which we express according to (2.102)-(2.104):

V (Q1, ..., QN) =
∑

i

fi(Qi) +
∑

i

Qi

∑

j≥i

fij(Qj)

+
∑

i

Qi

∑

j≥i

Qj

∑

k≥j≥k

fijk(Qk) (2.112)

In the above expressions there are some coefficients in the series expansion which
have to be equal to zero. They appear to be the constant terms of the derivative of
expression (2.110) with respect to Qi at Qi = 0:

∂V (Q1, ..., QN)

∂Qi

∣

∣

∣

∣

∣

Qi=0

= a1,i

+
∑

j 6=i

∑

n

bn,jiQ
n
j +

∑

j 6=i

Qjb1,ij

+b0,ii

+
∑

j 6=i

Qj

∑

k 6=i

∑

n

cn,kijQ
n
k +

∑

j

∑

k 6=j 6=i

QiQjc1,ijk

+
∑

j

Q2
jc1,ijj (2.113)

2.3.2 Scaling of the Calculation Time

Supposing that for each normal mode of a given molecule with N atoms, n points
have to be calculated ab initio, then a fully coupled potential energy hyper surface
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would be represented by a grid of n3N−6 points. Since a full 5D PES (∼ 100 000 single
point calculations) is nowadays computationally still too expensive approximations
are necessary for N > 4. The restricted form for the potential energy of eq. (2.53)
scales with (3N − 6) ∗ n4. The approximation for the potential energy which we
propose by combining eq. (2.53) with eq. (2.99) - (2.101) scales only with (3N−6)∗n.
However, it must be kept in mind that the Coupling Approach represents only a
smooth extrapolation towards the full PES.



Chapter 3

Computational details

In this chapter is given all information which has been essential in order to obtain
the results for the vibrational levels, IR absorption intensities, rotational constants
and anharmonic constants but which is not directly linked to them. Results for
geometries and harmonic wavenumbers for several functionals are already presented
and discussed in section 3.3.

In CCl3F there are nine vibrational degrees of freedom. Normal coordinates are
used in the calculations. However, if the symmetric top isotopomers are treated
there are three degenerated normal modes. This in principle reduces the number of
points needed to be calculated. See for this also section 4.2.2. Besides it is more
comfortable to treat the symmetric top C35Cl3F since its potential energy hyper
surface is more symmetric and constitutes where appropriate a kind of ’internal
reference’ (see section 4.4.2).

3.1 The Machines

Machines of the ETH Zürich and of Cambridge University could be used for the
heavy calculations which needed to be carried out. In the ETH

• DEC 8400 6/525, 2 GB memory, 51 GB disk (6 processors)

• DEC 8400 5/300, 4 GB memory, 51 GB disk (8 processors)

(both by COMPAQ)
while in Cambridge

• SGI origin 2000, (8 processors)

36
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were used.

3.2 The Basis Sets

The CADPAC package [38] was used throughout and TZ2P (triple zeta double
polarisation) and DZP (double zeta polarisation) basis sets [39, 40]. The TZ2P
basis set has been used for the electronic potential energies and their gradients and
the DZP basis set for the second derivatives of the electronic potential surfaces ’A’
or ’C’, respectively. For the surfaces ’B’ only the TZ2P basis set and for ’D’ only
the DZP basis were employed, respectively.

3.3 The Functionals

In order to determine which of the various functionals commonly used in DFT cal-
culations might be the most appropriate for trichlorofluoromethane the geometries
and the harmonic frequencies were determined for 9 functionals with the TZ2P basis
set. LDA [41], BLYP [27], B3LYP [42], B97-1 [43], BP86 [26], PBE [44], PBE0 [31],
HCTH/93 [45] and the HCTH/407 functional [46] yielded all satisfying results. The
corresponding values are given in Tables 3.1 and 3.2. The experimental geometries
are taken from ref. [47]. Tables 3.1 and 3.2 also give harmonic wavenumbers and
geometries for the B3LYP functional with the 6-311+G* basis [4, 48] and the B97-1
functional with the DZP basis. Experimental values of the fundamentals are taken
from [4] and [49].

Geometries

The determined geometries indicate in a manner the suitability of a given func-
tional/basis set for the considered molecular system. The geometry is so impor-
tant since in general for the calculation of the potential energy hyper surface the
Born-oppenheimer approximation is used. In order to calculate precise transition
frequencies, accurate geometries must be predicted. For all the functionals listed in
table 3.1 the predicted values for the C-F bond length were about 10 pm too short
and C-Cl bond lengths were a little bit too long. It is not surprising that the angular
predictions are within 1 degree of the Td angle 109.47 ◦ which is enforced by the
CADPAC input.
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Table 3.1: Comparison of experimental values for the geometries with results of DFT calculations
with eleven different functionals using all the TZ2P basis unless otherwise indicated

functional r(C-F) [Å] r(C-Cl) [Å] 6 Cl-C-Cl [◦] 6 Cl-C-F [◦]
LDA 1.332 1.762 110.35 108.65
BLYP 1.358 1.807 110.45 108.47
B3LYP 1.341 1.784 110.44 108.49
B97-1 1.339 1.786 110.43 108.49
BP86 1.351 1.790 110.35 108.58
PBE 1.351 1.786 110.35 108.58
PBE0 1.335 1.766 110.33 108.60

HCTH/93 1.342 1.781 110.35 108.57
HCTH/407 1.342 1.773 110.43 108.50

B3LYP(6-311+G*) [48] 1.351 1.785 110.91 107.99
B97-1(DZP) 1.339 1.786 110.43 108.49

experimental [47] 1.44 ± 0.04 1.76 ± 0.02 113 ± 3 100 ± 0.1

Table 3.2: Experimental fundamentals and calculated harmonic transition wavenumbers in cm−1

for eleven DFT functionals with the TZ2P basis unless otherwise indicated. First non degenerate
values, then degenerate values are given in decreasing energy.

functional ω1 ω4 ω7 ω2 ω3 ω5 ω6 ω8 ω9

LDA 1079.104 532.238 342.936 799.543 799.536 390.905 390.903 236.808 236.806
BLYP 991.649 488.422 324.881 729.023 728.960 367.265 367.249 228.213 228.213
B3LYP 1068.297 519.184 342.203 794.709 794.662 389.750 389.732 240.038 240.028
B97-1 1090.990 526.884 342.479 812.016 811.983 393.561 393.560 239.244 239.240
BP86 1022.428 505.818 332.495 759.345 759.321 376.780 376.771 231.623 231.618
PBE 1026.048 511.125 334.711 767.595 767.567 379.314 379.312 232.817 232.812
PBE0 1113.300 542.977 351.969 839.384 839.338 402.169 402.150 245.325 245.323

HCTH/93 1045.126 513.362 339.722 771.397 771.374 384.824 384.815 238.161 238.160
HCTH/407 1044.213 519.674 344.387 780.772 780.677 388.470 388.444 241.589 241.550

B3LYP(6-311+G*) [4] 1061.91 522.17 347.94 805.82 394.12 245.53
B97-1(DZP) 1121.831 537.384 351.435 843.240 843.239 400.621 400.621 245.168 245.167

fundamental ν1 ν4 ν7 ν2 ν3 ν5 ν6 ν8 ν9

experimental [4, 49] 1081.27982 538.16 351.41 849.52857 399.2 244.1
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Harmonic wavenumbers

Nearly all the calculated harmonic frequencies ωi of all the functionals are lower than
the observed fundamentals νi with the exception of PBE0 and B97-1, underlining
the already mentioned bond length inadequacy. If we compare for illustration three
harmonic frequencies calculated with the well known functional BLYP with the
corresponding experimentally determined fundamentals:

• ω1 − ν1 = −90 cm−1,

• ω4 − ν4 = −50 cm−1

• ω2 − ν2 = −120 cm−1.

In comparison to that the PBE0 functional gives a great improvement with much
smaller absolute values of the corresponding differences:

• ω1 − ν1 = 32 cm−1,

• ω4 − ν4 = 5 cm−1

• ω2 − ν2 = -10 cm−1.

Even though it is clear that the experimental fundamentals are not expected to
be equal to the harmonic wavenumber because they do not yet take into account
the anharmonic contributions. However, the difference is far too large and often
even of the wrong sign. Meaning that it is easier to decrease the result for the
harmonic frequency by introducing anharmonicity than to increase it. Table 3.2
gives the harmonic frequencies for C35Cl3F using in the CADPAC calculations a
Cs symmetry whereas the true symmetry is C3v. Cs symmetry is used in order to
obtain as an output which is appropriate as an input for MULTIMODE. It is very
encouraging that for PBE0 the results of the three pairs of degenerate modes are
degenerate to within 0.05 cm−1.

Used functionals for the surface calculations

PBE0 was chosen to be used for all crucial calculations of surface ’A’ (i.e. potential
energies and their gradients) and for all calculations of surface ’B’. It gives the short-
est C-Cl bondlengths and differs the least in its harmonic wavenumbers from exper-
imental fundamental frequencies. LDA also yielded very short C-Cl bondlengths.
But as already discussed in chapter 2.1.2. ’Functionals in DFT’ the Local Den-
sity Approximation functional describes only poorly molecular properties because it
considers the electronic density to be homogeneous throughout the whole molecule.
This shows to be true if one inspects the harmonic wavenumbers calculated by LDA:
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they are much smaller than the experimental fundamentals and deviate significantly
from the values obtained by hyprid functionals. Interestingly the famous BLYP
functional yields harmonic wavenumbers which are even worse than for LDA. In
order to measure the effects of using a different kind of functional also the hybrid
B97-1 functional is investigated in this work.

However, the fact that even for PBE0 the C-Cl bond length is not smaller than
the experimental value and that the harmonic wavenumber ω4 is smaller than the
experimental ν4 indicates already at this point that the results of the calculations
with normal modes which involve vibrations with C-Cl motion might become prob-
lematic. An introduction how to recognize which normal modes involve which intra
molecular motion within cartesian coordinates is given in the next section.
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3.4 The l-matrix

The l-matrix was already mentioned in chapter 2.3.1. and introduced in 2.3.2.
Its basic idea is to ”focus” the simultaneous changing of all the nuclei in a given
molecular system within a given vibration on one coordinate: the normal mode
Q. If the potential energy surface were perfectly harmonic each displacement in
a given normal coordinate would correspond to a motion of the nuclei in a local
potential energy minimum with respect to the other normal modes as long as all
other normal modes are kept zero. So, the l-matrix is the essential link between
the molecular structure in cartesian coordinates and the normal coordinate Q. The
l-matrix describes the relative amplitude of displacement from equilibrium geometry
(compare to table (3.1)) for each nucleus for each normal mode being normalized to
1. Therefore the elements of the l-matrix have to fulfill for each vibrational degree
of freedom the normalization condition that

∑

xyz,α l2xyz,α,i = 1 where i is a given
vibrational degree of freedom, α runs over the nuclei in the molecule and xyz over
all the three cartesian coordinates: lxyz = lx+ ly + lz.

CADPAC generates the l-matrix for each harmonic frequency. However, in or-
der to have the necessary formal Cs input for MULTIMODE also the frequencies
had to be calculated within Cs-symmetry. Numerical inaccuracies were thus intro-
duced into the l-matrix which were of the order of less than a percent. The l-matrix
was then changed manually to C3v by setting values of symmetric motions equal.
Thus symmetrical accuracy was obtained again while orthogonality was lost. How-
ever, since the inaccuracies are neglectible small the l-matrix was not orthogonalized
again. One obtains for ω6 for example:

∑

xyz,α l2xyz,α,6 = 1.000028 instead of 1.
The symmetry of a given mode becomes evident by inspection of the elements in
the l-matrix of the corresponding mode. The reference system of the molecule in
cartesian coordinates is shown in figure 3.1. The equilibrium geometry is given in
table 3.3. One can thus identify the corresponding vibrational normal modes of
CCl3F.

Table 3.3: Equilibrium geometry in atomic units for C35Cl3F calculated by PBE0 and TZ2P basis.

Atom x y z
C1 0.0000000000 0.0000000000 0.0314423666
F1 0.0000000000 0.0000000000 2.5494624038
Cl1 -1.5811556929 2.7386419948 -1.0326586121
Cl2 -1.5811556929 -2.7386419948 -1.0326586121
Cl3 3.1623113858 0.0000000000 -1.0326586121
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Figure 3.1: CCl3F in a right handed cartesian
coordinate reference system: the z-axis points
up while we look down from F towards C. The
positions of the atoms correspond to table 3.3
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Table 3.4: The l-matrix. All fundamental fre-
quencies ωi of a given normal mode i are in
cm−1. The coordinate system corresponds to
figure 3.1. For each normal mode the deduced
irreducible representation is indicated.

Γirr
Cs

i ωi atom x y z

A’ 1 1091.04 C 0.00000 0.00000 0.81216
F 0.00000 0.00000 -0.58285
Cl -0.00083 0.00148 -0.01537
Cl -0.00083 -0.00148 -0.01537
Cl 0.00166 0.00000 -0.01537

A” 2 812.11 C 0.00000 0.94276 0.00000
F 0.00000 -0.16419 0.00000
Cl 0.07185 -0.18518 0.02880
Cl -0.07185 -0.18518 -0.02880
Cl 0.00000 -0.06085 0.00000

A’ 3 812.05 C 0.94276 0.00000 0.00000
F -0.16419 0.00000 0.00000
Cl -0.10242 0.07185 -0.01665
Cl -0.10242 -0.07185 -0.01665
Cl -0.22649 0.00000 0.03323

A’ 4 526.91 C 0.00000 0.00000 0.39234
F 0.00000 0.00000 0.56685
Cl -0.17906 0.31022 -0.21590
Cl -0.17906 -0.31022 -0.21590
Cl 0.35824 0.00000 -0.21590

A” 5 393.54 C 0.00000 -0.05421 0.00000
F 0.00000 0.66736 0.00000
Cl 0.26646 -0.30720 0.31400
Cl -0.26646 -0.30720 -0.31400
Cl 0.00000 0.15428 0.00000

A’ 6 393.53 C -0.05421 0.00000 0.00000
F 0.66736 0.00000 0.00000
Cl 0.00000 0.26664 -0.18119
Cl 0.00000 -0.26664 -0.18119
Cl -0.46078 0.00000 0.36267

A’ 7 342.54 C 0.00000 0.00000 -0.31336
F 0.00000 0.00000 -0.44629
Cl -0.22643 0.39200 0.17096
Cl -0.22643 -0.39200 0.17096
Cl 0.45309 0.00000 0.17066

A’ 8 239.29 C 0.12762 0.00000 0.00000
F 0.39817 0.00000 0.00000
Cl -0.36350 -0.41702 -0.11868
Cl -0.36350 0.41702 -0.11868
Cl 0.35877 0.00000 0.23737

A” 9 239.26 C 0.00000 -0.12762 0.00000
F 0.00000 -0.39817 0.00000
Cl 0.41696 -0.11797 -0.20561
Cl -0.41696 -0.11797 0.20561
Cl 0.00000 0.60424 0.00000
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3.5 Asymmetric Top versus Symmetric Top

As already introduced in chapter 2.2.2 one has to transform the anharmonic con-
stants obtained by SPECTRO within the asymmetric top description in the case
of the C3v isotopomers. One can show that xsym

ss′ = xasym
ss′ and that xasym

sta
∼= xasym

stb

which leads to the conclusion that xsym
st = 1/2(xasym

sta +xasym
stb ) ([50]). This can easily

be checked by inspection of the SPECTRO output (see Appendix A). In order to
express xsym

tt′ and xsym
tt′ and their corresponding g constants in terms of the anhar-

monic constants of the asymmetric top description the in chapter 2.2.2 introduced
method of simply subtracting the Hamiltonians has been used. In the following
this approach will be called ’HAMDIFF’. A derivation had been done in ref. ([50])
for benzene. In Appendix A the equations are checked with the help of MATHE-
MATICA for any C3v symmetric molecule. It is found that:

xsym
tt = xasym

tata

gtt =
1

2
xasym

tatb − xasym
tata

xsym
tt′ =

1

2
(xasym

tata′ + xasym
tatb′ ) (3.1)

gtt′ =
1

2
(xasym

tata′ − xasym
tatb′ )

Except for gtt′ these expressions have been identified likewise in ([50]) for the D6h

symmetric molecule benzene. gtt′ has not yet been explicitly given in those simple
terms of xasym. These expressions to transform anharmonic constants obtained by
an asymmetric top Hamiltonian into anharmonic constants corresponding to a
symmetric top Hamiltonian have been implemented in a small FORTRAN pro-
gram which uses the SPECTRO output as input. It is given in Appendix A.

However, the result is somewhat surprising. One would expect intuitively that
xsym

tt should contain some xasym
tatb . Furthermore, it is found by MATHEMATICA that

these identifications are true if and only if xasym
tata is equal to xasym

tatb . That this is not
the case can be found by inspection of the results of SPECTRO for the xasym

tata of the
symmetric top isotopomers and also by recognizing that in this case all gtt′ would
have to be equal zero.

Alternatively, for the two symmetric top isotopomers all anharmonic constants
between degenerate modes can be recalculated with the help of the eigenvalue spec-
trum which is given in the SPECTRO output. In the following this approach will
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be called ’SPEC’. The following expressions are used:

xtt =
(ntνt)

(A1) − ntνt

nt
=

(2νt)
(A1) − 2νt

2
(3.2)

gtt =
(ntνt)

(E) − (ntνt)
(A1)

l2t
=

(2νt)
(E) − (2νt)

(A1)

4
(3.3)

xtt′ =
(ntνt + nt′νt′)

(A1) − ntνt − nt′νt′

nt + nt′
=

(1νt + 1νt′)
(A1) − 1νt − 1νt′

2
(3.4)

gtt′ =
(ntνt + nt′νt′)

(E) − (ntνt + nt′νt′)
(A1)

lt · lt′

=
(1νt + 1νt′)

(E) − (1νt + 1νt′)
(A1)

1
(3.5)

Here nt and lt are the corresponding quantum numbers. Having one quanta in each
mode there are four combinations:

lt lt′ Γirr
C3v

+1 −1 A1/A2

−1 +1 A1/A2

+1 +1 E
−1 −1 E

Since for E the quantum numbers lt and lt′ have the same sign the denominater
in eq. (3.5) will always be positive. Unfortunately, it is not always evident how to
determine the xsym from an eigenvalue spectrum which has been predicted by an
asymmetric top Hamiltonian. For example x22, g22, x58 and g58 of C35Cl3F are
calculated as follows:

(2ν2)
(A1) = 1647.1662 cm−1

2(ν2) = 2 · 827.0915 + 827.4308

2
= 1654.5223 cm−1

x22 =
1647.1662 − 1654.5223

2
= −3.68 cm−1

where 827.0915 and 827.4308 cm−1 are the two degenerate components ν2 and ν3.
There is thus an estimated error of ∆x22

≈ ± 0.15 cm−1. Concerning g22:

(2ν2)
(E) =

1653.1534 + 1647.9301

2
= 1650.5 cm−1

g22 =
1650.54175− 1647.54815

4
= 0.74840 cm−1
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Having a considerable error of ∆g22
≈ ± 0.7 cm−1! The averaged values indicate thus

in a way the error for the numerical inaccuracies which are introduced by ignoring
symmetry when deducing the effective Hamiltonian. Wishing to determine the
overtones (2ν2) one encounters the following SPECTRO output:

4126.7247 1647.1662 NON-DEG (Vs) : 0 0 2 0 0 0 0 0 0
4127.4885 1647.9301 NON-DEG (Vs) : 0 2 0 0 0 0 0 0 0
4132.7119 1653.1534 NON-DEG (Vs) : 0 1 1 0 0 0 0 0 0

The first column indicates the energy in cm−1, the second the energy above zero
point, the third the degeneracy of the state (in the asymmetric top expression there
is no degeneracy for CCl3F) and the final nine numbers represent the vibrational
quanta in the following (energetical) order which corresponds to the order shown
in table 3.4: nasym

1 , nasym
2degen

, nasym
3degen

, nasym
4 , nasym

5degen
, nasym

6degen
, nasym

7 , nasym
8degen

, nasym
9degen

. In
table 3.4 is also indicated the symmetry of the corresponding normal mode from
which the symmetry of vibrational state given within SPECTRO can be deduced.
For example the state

normal mode 1 2 3 4 5 6 7 8 9
Γirr

Cs
A′ A′′ A′ A′ A′′ A′ A′ A′ A′′

vibrational state 0 1 1 0 0 0 0 0 0

would correspond to a vibrational state having the irreducible representation Γirr =
A′′ (within the Cs symmetry group).

Thus, we find for the output above:

1647.1662 0 0 2 0 0 0 0 0 0 A′

1647.9301 0 2 0 0 0 0 0 0 0 A′

1653.1534 0 1 1 0 0 0 0 0 0 A′′

and state that the degenerate E state must be formed by the A′′ plus that A′ which
is the closest to the A′′ which is in this case the 1647.9301 cm−1 band. The remain-
ing A′ state is defined to be A1. Of course, this means that also here there enters the
approximation which has been affirmed by using the asymmetric top Hamiltonian

since the A′′ and A′ states which are supposed to form the degenerate E state are
not at all strictly degenerate. Imposing symmetry for the PES would have had the
strict degeneracy of the A′′ and one A′ as a consequence.

In the case of the off diagonal anharmonic constants 58 the SPECTRO output is

3121.1127 641.5542 NON-DEG (Vs) : 0 0 0 0 1 0 0 1 0
3121.1851 641.6267 NON-DEG (Vs) : 0 0 0 0 0 1 0 0 1
3121.4750 641.9166 NON-DEG (Vs) : 0 0 0 0 1 0 0 0 1
3121.4995 641.9411 NON-DEG (Vs) : 0 0 0 0 0 1 0 1 0
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which corresponds to

641.5542 0 0 0 0 1 0 0 1 0 A′′

641.6267 0 0 0 0 0 1 0 0 1 A′′

641.9166 0 0 0 0 1 0 0 0 1 A′

641.9411 0 0 0 0 0 1 0 1 0 A′

It is difficult to judge which of the four possible combinations of A′′+A′ states will
form the E state. If the numerical inaccuracy of the anharmonic conants determining
the eigenvalue spectrum is taken into account it might facilitate a choice: xasym

55 =
-0.435, xasym

66 = -0.401. As deviations to it we find ± 0.019 for 55/66 and ± 0.0035
for 88/99. By adding the corresponding corrections to the eigenvalues we find the
following:

641.5352 0 0 0 0 1 0 0 1 0 A′′

641.6457 0 0 0 0 0 1 0 0 1 A′′

641.9131 0 0 0 0 1 0 0 0 1 A′

641.9446 0 0 0 0 0 1 0 1 0 A′

The values did not change considerably which as above indicates the missing symme-
try in the PES. However, the two closest lying A′′ and A′ states should rather form
the degenerate E state within the symmetric top representation than the alternative
combination. A transition towards the remaining A′′ state (becoming A2 within a
symmetric top) is symmetry forbidden when leaving from a symmetric groundstate.
Since it is not intended to change the eigenvalue spectrum the uncorrected values
are still used to determine the off diagonal anharmonic constants x58 and g58:

(ν5 + ν8)
(A1) = 641.9411 cm−1

ν5 =
398.3835 + 398.3911

2
= 398.3873 cm−1

ν8 =
243.5446 + 243.5575

2
= 243.55105 cm−1

x58 =
641.9411 − 398.3873 − 243.55105

2
≈ 0.0014 cm−1

and

(ν5 + ν8)
(E) =

641.6267 + 641.9166

2
= 641.7718 cm−1

g58 =
641.7718 − 641.9411

1
≈ −0.17 cm−1

All other degenerate/degenerate anharmonic constants have been determined in the
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same manner: Assuming that the mean value of the two closest lying levels of
different symmetry corresponds to the E state. The deviation of the original values
from the mean value is considered to correspond to an estimated error.
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3.6 The Coupling Approach

3.6.1 Potential Energy within the Coupling Approach

Having defined the polynomial series expansions fi, fij and fijk as in eq. (2.99-2.101)
a potential energy dependent only on three normal modes would be expressed as in
the following:

V (Q1, Q2, Q3) =
3
∑

i=1

fi(Qi) +
3
∑

i=1

Qi

3
∑

j=1

fij(Qj)(1 − δij)

+
3
∑

i=1

Qi

3
∑

j=1

Qj(1 − δij)
3
∑

k=1

fijk(Qk)(1 − δjk)

(3.6)

The potential energy which has been finally used corresponds to the above expression
but the sums go from i = 1 to 9 since there are nine normal modes in CCl3F.

3.6.2 Inspection of the fit

For some of the expressions which are deduced within the Coupling Approach pre-
dictions are possible for reasons of symmetry. They are derived in this section.
For a Cs-symmetry there are modes with: A′ and A′′ symmetry. The former repre-
sents symmetric behaviour with respect to the reflection plane, the latter represents
asymmetric behaviour.

It is recalled that the following equations are valid (being already used in chapter
2.2.2 and 3.5):

A′′ × A′′ = A′

A′ × A′ = A′

A′′ × A′ = A′ × A′′ = A′′

In the C3v symmetric isotopomers of CCl3F there are three degenerate modes of
which each one has one component with A′′-symmetry.
By expressing the potential energy as it is done within the Coupling Approach it
is necessary that all terms are of A′ symmetry. Therefore predictions to the kind
of exponents of the series expansions (fij) approaching the derivatives in eq. (2.99)
etc. can be done. Their multiplication with other modes must obey the symmetry
rules stated above. There are four possible combinations for the coupling of two
normal modes: Coupling of two asymmetric, coupling of two symmetric, coupling
of an asymmetric with the derivative of a symmetric and coupling of a symmetric
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with the derivative of an asymmetric normal mode. Defining the derivative with
respect to Q as ∂Q = ∂

∂Q
and denoting the A′′ modes u and all A′ normal modes g

one obtains thus for fgu, fug, fuu and fgg (note that fgu 6= fug):

1. Qg∂QgV (Qu) has to be of A′ symmetry. Since by definition Qg is of A′ symmetry
it follows

that ∂QgV (Qu) = A′

So, the series expansion fgu to describe ∂QgV (Qu) is expected to have even
exponents.

2. Also Qu∂QuV (Qg) must be A′.

Therefore ∂QuV (Qg) = A′′

This expression is contradictive. This is so because ∂QuV (Qg) is a function of
Qg which is A′ and not A′′. Therefore fug has to be equal to zero.

3. The combination Qu∂QuV (Qu) = A′ is the case in which ∂QuV (Qu) has to be
expanded within an uneven polynom fuu of A′′ symmetry.

4. The combination Qu∂QuV (Qu) tells then that ∂QuV (Qu) can be represented by
uneven as well as by even series expansion fgg.



Chapter 4

Results

All obtained PES and how they are constituted are presented in this part of the
study.

4.1 An overview

In table 4.1 are indicated the various PES used in this work, the isotopomers,
the spectroscopic programs, DFT functionals, basis sets, approximations and ta-
bles where the corresponding results are presented are indicated.

Table 4.1: The PES of this work
PES Isotopomer Program Functional/Basis set Coupling Approach table
’A’ C35Cl3F MM PBE0/TZ2P—B97-1/DZP yes 5.1, 5.3
’D’ C35Cl3F MM B97-1/DZP no 5.3
’B’ C35Cl3F SP PBE0/TZ2P no 5.3
’B’ C37Cl35Cl2F SP PBE0/TZ2P no 5.3
’B’ all SP PBE0/TZ2P no 5.8,5.5
’C’ C35Cl3F SP PBE0/TZ2P—B97-1/DZP yes 5.3, 5.4 - 5.5

In the following sections the results for each PES are explained in more detail.

4.2 MULTIMODE

4.2.1 Surface ’A’

The electronic potential energy, its first and second derivatives were evaluated for
16 displacements along each normal mode and such for a total of 144 geometries

50
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(taking already into account energetically symmetrical normal modes). The elec-
tronic potential energy and the gradients were obtained with the TZ2P basis set,
and the B97-1 or the PBE0 functional, respectively. The second derivatives with the
DZP basis are only calculated for B97-1. Thus, following the outline in chapter 2.3.
’the Coupling Approach’ the electronic potential energies account for eq. (2.102)
representing thus V (1). The gradients define eq. (2.103) and thus a part of V (2) and
the second derivatives were fitted by eq. (2.104) corresponding to to V (3) and the
remaining part of V (2). The used expression of the potential energy is:

V (Q) = V
(1)energies

PBE0,TZ2P + V
(2)gradients

PBE0,TZ2P + V
(2)2ndDerivatives

B97−1,DZP + V
(3)2ndDerivatives

B97−1,DZP

The variational calculations of MULTIMODE followed the procedure described
in [13, 51]. For the VSCF calculations, 8 basis functions are used per normal mode
starting from 14 primitives harmonic oscillator functions and the 16 Gauss quadra-
ture points per normal mode are contracted to 10 points. The contraction technique
is described in detail in ref. [13, (a)]. In the VCI calculations, convergency is reached
with the following CI basis: The excitations from the vibrational VSCF ground state
involve up to a maximum of 4 normal modes simultaneously. For the one-, two-,
three- and four- mode excitations, the maximum of quanta per mode is 6, 5, 4 and
3, respectively, and the maximum sum of quanta per vibrational level is 6. The
same number of primitive functions and integration points as in the VSCF step are
used, and 7 contracted basis functions being necessary. Predictions for fundamen-
tals, combination bands and overtones of C35Cl3F from MULTIMODE VSCF and
VCI calculations using surface ’A’ are presented in Table 5.3.

The calculation time for the electronic potential energy and its first derivative was
about 20 min on the machines in Zürich, the time for the second derivatives was
the double: 40 min even though a smaller basis had been chosen (DZP). Thus for
generating the total PES ’A’ consisting of 144 points approximately only 6 d of
calculations were necessary.

4.2.2 Surface ’D’

To investigate the validity of PES ’A’ a higher dimensional PES (’D’) was generated
for C35Cl3F. This PES consists of a grid of all possible combinations of single point
calculations for two normal modes. The total number of points for the nine modes is
thus: nD ∗∑N

i=2 where n is the number of single point calculations per normal mode,
D is the dimensionality of the PES and N is the number of vibrational degrees of
freedom. Thus for n = 10, N = 9 and a 2D PES there are 100 ∗ (9 + 8 + 7 + 6 + 5 +
4 + 3 + 2) = 3400 points to be calculated.
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For all combinations, however, in which a degeneracy is involved the V (Qdegenerate)
has to be symmetric for the A′′-mode (mode 9, 5 and 1 - compare to the section
’Inspection of the fit’). Therefore only half of the given 2D surface needed to be
evaluated and then reflected to give the complete two normal mode dependent sur-
face. Such the total number of points not lying on a single normal mode was only
2550 points. Using the information of those points which led already to PES ’A’
resulted in a total number of 2694 geometries for which energies and gradients are
determined. All the 2550 points were calculated with the B97-1 functional and the
DZP basis set. The energies and gradients were used in a two-dimensional Hermite
interpolation to obtain the PES ’D’ (see reference [18]). The results for the funda-
mentals are shown in table 5.3.

Because one point on this PES and its gradient takes about 280 seconds the to-
tal PES ’D’ with 2550 needed nearly 8 d of calculation time on the machines in
Zürich.
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4.3 SPECTRO

The second derivatives which are the elements of the Hessian matrix and figure in
eq. (Vspectro), (phiijk) and (phiiijj) are approached in this present study by two
alternative ways:

1. They can be determined with the help of a force field which is directly calculated
by a combined SPECTRO / CADPAC code using the energies of 19 points.
This is done for all isotopomers. The PES using these expressions is called ’B’.
It is generated for all isotopomers.

2. They are derived from equations (2.102), (2.103) and (2.104) (see section 2.3)
defining surface ’A’ (compare to the chapter ’The Coupling Approach’). The
surface using these definitions of the quartic and cubic terms is called ’C’. As
’A’ it is only derived for the isotopomer C35Cl3F.

4.3.1 Surface ’B’

Surface ’B’ was determined by a SPECTRO / CADPAC calculation [14] using the
functional PBE0 and the TZ2P basis set. To generate a ’B’ PES for one isotopomer
circa 2,5 d calculation time on the machines in Zürich was needed. For the iso-
topomers C35Cl3F, C37Cl3F, C35Cl2

37ClF and C35Cl37Cl2F vibrational eigenvalues,
harmonic frequencies, anharmonic constants, absorption intensities and rotational
constants are shown in tables 5.3 and 5.8, 5.5. According to eq. (2.87) the ab-
sorption intensities were corrected by weighting with their Boltzmann factors for
T = 298 K [7]:

1 − giexp
[

− hcνi

kT

]

= 1 − giexp
[

− 0.004828νi/cm−1
]

=

• 0.9946 for ν1 = 1080.7 cm−1, gi = 1

• 0.9247 for ν2 = 535.6 cm−1, gi = 1

• 0.8147 for ν3 = 349.2 cm−1, gi = 1

• 0.9668 for ν4 = 848.9 cm−1, gi = 2

• 0.7037 for ν5 = 395.9 cm−1, gi = 2

• 0.6211 for ν6 = 242.2 cm−1, gi = 2

As already mentioned in chapter 2.2.2 and 3.5 there are approximations for the
C3v symmetric isotopomers. Their anharmonic constants xsym

st , xsym
tt , gsym

tt , xsym
tt′ , or



CHAPTER 4. RESULTS 54

gsym
tt′ , respectively, have to be deduced from the asymmetric top expression xasym

sta ,
xasym

stb , xasym
tata , xasym

tbtb and xasym
tatb . Within the ’HAMDIFF’ method this is done in detail

in Appendix A with the help of the formulas (3.1) introduced in chapter 3.5. Fur-
thermore, following the ’SPEC’ method the anharmonic constants for the symmetric
top isotopomers are also obtained by calculating them with the help of the eigenvalue
spectrum generated by the anharmonic constants of the asymmetric top representa-
tion (see chapter 3.5, expressions 3.2 -3.5). The spectrum is likewise already given in
the SPECTRO output. The latter approach to determine the anharmonic constants
is not as elegant as expressing directly xsym=f(xasym) but it avoids the problem of
correlating quantum numbers of different symmetrical representations. Both ways
of determining the symmetric top anharmonic constants are carried out in order to
see if the idea of expressing directly xsym = f(xasym) introduces any non negligible
errors.

4.3.2 Surface ’C’

For C35Cl3F the harmonic force constants were identified not within the SPECTRO
/ CADPAC-calculation but also with the potential of the Coupling Approach (see
above). The cubic and quartic force constants were derived by finite displacement
using the normal SPECTRO calculation. Thus all the spectroscopic constants be-
came accessible via the Coupling Approach. No further calculation time was needed
for these results.



Chapter 5

Discussion, Conclusions and

Outlook

In this chapter the actual results are presented and discussed. Finally, conlusions
are drawn and potential improvements are proposed.

5.1 Discussion

Discussing the Coupling Approach: Table 5.1

Table 5.1 represents the dependency of the fundamental wavenumbers on the in-
creasing order of coupling in the expression for the potential energy (see eq. (2.54)
and (2.99) and the following). Thus in table 5.1 V (1) means that the potential en-
ergy surface is approximated as V (Q) =

∑9
i=1 V (1)(Qi) while V (1) +V (2) means that

V (Q) =
∑9

i=1 V (1)(Qi) +
∑9

i=1,i6=j V (2)(Qi, Qj) etc.. Going from first to third order

one observes generally an improvement of several cm−1 in comparison to experi-
ment. Furthermore, also the degeneracy improves. The largest improvement takes
place if the coupling between all the combinations of two normal modes is included.
However, the improvement due to the including of simultaneous coupling between
three modes is neglectible. So, this means that for CCl3F the quality of the basis set
and the functional which introduce fijk (eq. 2.101) within the Coupling Approach
is not crucial and that only the gradient and the energies are essential within the
Coupling Approach. Thus the calculation time could become one third of what it
takes originally. By achieving this state of computational cost (∼ 2 d) the Coupling
Approach becomes even cheaper than the standard procedure to generate PES ’B’
(∼ 2,5 d).

55
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Table 5.1: Comparison of the convergence by varying the degree of coupling in the potential energy
expansion in the frame of the Coupling Approach: Variation of the MM-VSCF fundamentals [cm−1]
of C35Cl3F

νi V (1) V (1) + V (2) V (1) + V (2) + V (3) exp. ([49])
ν1 1095.38 1091.83 1091.69 1081.27982
ν4 542.06 539.91 539.92 538.16
ν7 351.87 350.30 350.36 351.41
ν2 838.34 830.13 830.53 849.53
ν3 842.74 831.10 831.13 ”
ν5 402.34 399.46 399.49 399.2
ν6 402.60 399.49 399.49 ”
ν8 245.54 244.08 244.09 244.1
ν9 245.28 243.97 244.00 ”

Discussion of the eigenvalues in Table 5.2 and 5.3

All results in table 5.3 compare very well to experimental values. The agreement
with experiment is excellent for nearly all fundamentals and low lying combination
bands: often even less than 1 cm−1. The degenerate CCl3 stretching normal mode ν4

and the ν1 C-F stretching normal mode could be satisfyingly calculated disagreeing
with respect to experiment by ≈ 22 cm−1 and ≈ 11 cm−1, respectively. These are
the two highest lying fundamentals. It is therefore consistent that the agreement
acchieved for the corresponding overtones as for example the 2 ν1 band is not any
better.
As already mentioned in Chapter 3.3 ’The Functionals’ the used functionals might
not be the most appropriate in order to calculate the ν4 CCl vibration because the
calculated harmonic wavenumber is too low and the CCl bondlength is too long.
So, one would not expect an agreement with experiment as good as for the other
fundamentals. However, considering this band and the ν1 it becomes clear that it
is reproduced the best by the ’C’-surface which represents the Coupling Approach
combined with SPECTRO.

Thus we can conclude that the reason for the comparatively less accurate predic-
tion must be rather due to the potential energy calculations than due to the fitting
procedures which generate the input for MULTIMODE or SPECTRO

One observes a good agreement between the three surfaces ’A’, ’B’ and ’C’. They
differ generally only between 0.5 and 2 cm−1. Being computationally less expen-
sive (see previous section) the Coupling Approach (’C’) is directly comparable to
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Table 5.2: Fundamentals νi and experimental values [49] (in cm−1) determined for all isotopomers
by PES ’B’, for C35Cl3F also by ’C’

i ’C’: C35Cl3F ’B’: C35Cl3F exp. C35Cl2
37ClF exp C35Cl37Cl2F exp. C37Cl3F exp.

1 1093.3 1093.4 1081.9 1093.0 1080.7 1093.1 1079.9 1093.0 -
4 537.7 537.7 538.2 535.2 535.6 535.3 533.0 535.4 530.4
7 349.8 349.7 351.4 347.5 349.2 347.5 347.0 347.6 -
2 827.9 827.3 849.5 826.3 848.9 826.3 - 826.9 847.1
3 ” ” - 826.9 - 827.2 - ” -
5 398.5 398.4 399.2 394.6 395.9 394.7 - 396.4 -
6 ” ” - 398.1 - 398.7 - ” -
8 243.8 243.5 244.1 241.2 242.2 241.3 240.3 241.8 -
9 ” ” - 242.3 - 242.4 - ” -

the conventionally obtained results of SPECTRO (’B’). Furthermore the influence
of the use of MM instead of SPECTRO can be seen by comparison of the results
for ’B’ with the results for ’A’. Likewise they agree one which each other very well.
Nevertheless, this good agreement is not the case for some overtones and combina-
tion bands like for example the A1 absorption (000111100): at ≈ 1225 cm−1: ν(PES
’A’)-ν(PES ’B’) = 3.6 cm−1 or for the 2 ν1 (200000000) band at 2145.2 cm−1. Unfor-
tunately, for the first and other diverging cases there is no experimental assignment
in order to distinguish between these surfaces but the latter and the ν1 + ν6 absorp-
tion indicate for SPECTRO PES ’B’ a slightly better agreement with experiment.
The ’D’-surface behaves rather poor in comparison with the other surfaces. This
means that the DZP-basis is insufficient and can even not be compensated by in-
cluding 2D cuts into the PES (see also 4.3.2).
Nevertheless, this table demonstrates in general highly accurate predictions for rel-
atively low calculation costs.

Also for C35Cl2
37ClF the agreement between calculated vibrational frequencies

and experimental data is splendid. Furthermore one can compare in table 5.3 the
effect of the isotopic shift for experiment and the results for PES ’B’. The last colum
represents exactly the same approach towards the PES as the fifth. The only differ-
ence lies in symmetry. Thus the influence of change of symmetry from C3v to Cs can
be directly seen within the given approximations. The results show - in analogy to
experiment - a shift of the eigenvalue spectrum towards lower vibrational frequen-
cies. This is reasonable since the mass of one atom involved into the vibrational
motion has been increased. Indeed a comparison of the predicted eigenvalues with
the experimental ones allows to judge which of the two isotopomers is better de-
scribed by the asymmetric top Hamiltonian. If the asymmetric Hamiltonian was
inadequate for the symmetric isotopomer C35Cl3F the differences of its eigenvalues



CHAPTER 5. DISCUSSION, CONCLUSIONS AND OUTLOOK 58

in comparison to experiment would be bigger than for the asymmetric isotopomer.
The differences between these differences range in an order of less than 1 cm−1

meaning that they are small with respect to the systematical errors of the calcu-
lations. Thus, at least for the eigenvalue spectrum, the fact that the asymmetric
top Hamiltonian has been used for a symmetric top molecule seems to be a ”le-
gitimate” approximation within the methods which were used in this work. The
results for all isotopomers in table 5.2 demonstrate very good agreement of the pre-
dicted eigenvalues in comparison to experiment and correct tendencies for isotopic
shifts from C35Cl3F to C37Cl3F. The only exceptional result is the isotopic shift for
C37Cl3F for which the lowest eigenvalues are expected. However its ν2 increases
with respect to the lighter isotopomers. In fact this could be a consequence of the
use of the asymmetric Hamiltonian.
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Table 5.3: Comparisons and assignments of fundamentals, overtones and combination bands for
C35Cl3F determined for the PES ’A’, ’B’, ’C’ and ’D’ using MM-VCI (MULTIMODE) and SP
(SPECTRO) and for C35Cl2

37ClF using PES ’B’ (For those frequencies were degeneracy is abol-
ished the average of the A′ and A′′ assigned values are indicated). All values are given in cm−1.
Some of the experimental data are estimated with the help of experimental combinational values.

Assignments C35Cl3F C35Cl2
37ClF

n1n2n3n4n5n6 Γirr
C3v

exp. [49] ’A’ (MM) ’B’ (SP) ’C’ (SP) ’D’ (MM) Γirr
Cs

exp. [49] ’B’

000000000 A1 ZPE 2481.8 2478.8 2479.0 2421.0 A′ ZPE 2472.6
000000011 E 244.1 243.8 243.5 243.8 238.3 A′, A′′ 242.2 241.6
001000000 A1 351.4 349.6 349.7 349.8 341.7 A′ 349.22 347.5
000001100 E 399.2 398.4 398.4 398.5 392.6 A′, A′′ 395.9 394.6
000000020 A1 - 487.2 487.0 487.5
000000022 E - 488.0 487.3 487.8
010000000 A1 538.2 537.1 537.7 537.7 526.5 A′ 535.6 535.2
001000011 E - 593.7 593.2 593.6
00001111 E - 642.5 641.8 642.2
002000000 A1 - 699.0 699.3 699.4
001001100 E - 747.7 747.7 747.9
010000011 E 781.7 780.4 780.6 780.9 A′′ 777.2 776.3
000002000 A1 - 796.1 795.9 796.1
000002200 E - 795.8 795.8 795.9
000110000 E 849.5 827.6 827.3 827.9 812.1 A′, A′′ 848.9 826.5
011000000 A1 888.7 886.0 886.6 886.7 A′ 884.0 881.9
010001100 E 936.5 936.0 936.9 936.9
000110011 A2 - 1070.2 1069.3 1069.2

E - 1070.9 1069.7 1069.9
020000000 A1 - 1072.8 1074.2 1074.2
100000000 A1 1081.9 1092.3 1093.1 1093.3 1065.4 A′ 1080.7 1093.0
011000011 E 1132.2 1130.4 - -
001110000 E - 1175.8 1175.2 1175.1
000111100 A1 - 1225.7 1223.4 1222.4

A2 - 1228.5 1224.0 1225.5
E - 1224.0 1223.6 1224.0

100000011 E 1324.2 1337.2 1337.1 1335.4
010110000 E - 1361.6 1361.8 1361.4
101000000 A1 - 1442.9 1443.8 1442.1
100001100 E - 1487.9 1488.0 1486.9
110000000 A1 - 1628.0 1629.4 1628.2
000200000 A1 - 1644.8 1647.9 1646.7
000220000 E - 1653.8 1653.2 1650.7
100110000 E - 1920.2 1921.0 1918.2
200000000 A1 2145.2 2174.4 2168.8 2165.8
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Table 5.4: Rotational constants Bα
e and corresponding experimental values [52, 4] in cm−1 deter-

mined for all isotopomers with the help of PES ’B’ and for C35Cl3F also with ’C’

Isotopomer A exp. B exp. C exp.
’C’: C35Cl3F 0.0820 - 0.0820 0.08225098 0.0574 0.05771
’B’: C35Cl3F 0.0820 - 0.0820 0.08225098 0.0574 0.05771
C35Cl2

37ClF 0.0819 0.082160 0.0798 0.080036 0.0563 0.056606
C35Cl37Cl2F 0.0808 0.081034 0.07868 0.078898 0.05529 0.055608

C37Cl3F 0.07861 - 0.07861 - 0.05428 -

Table 5.5: Comparison of experimental and calculated intensities Gi [pm2] for the fundamentals
(within the double harmonic approximation) of CCl3F. The indeces i correspond to the energetical
order of the fundamentals. See also table 5.6.

Gobs
i Geff

i

i exp. [7] ’B’
1 2.61 ± 0.22 2.67
4 0.0346 ± 0.0012 0.0551
7 0.0137 ± 0.0024 0.007

2/3 7.40 ± 0.59 8.2
5/6 0.00206 ± 0.00041 0.0068
8/9 ≤ 0.0007 0.0022

Discussing rotational constants in table 5.4

Table 5.4 shows the coherent influence of the isotopic shift on the results for rota-
tional constants. A and B - which have to be identical in the case of the C3v symmet-
ric isotopomers - agree completely despite the use of the asymmetric Hamiltonian.
A likewise excellent agreement with experiment is to be noted.

Discussing absorption intensities in table 5.5

All absorption intensities show very good results in comparison to experiment. Ex-
cept for the ”problematic” Geff

2/3 are all deviations from experiment smaller than

0.05 pm2. As already explained in chapter 4.3.1 the corrections for the temperature
dependency of the absorption improved the values in comparison to experiment es-
pecially for the low lying degenerate fundamentals. The ν89 band has an intensity
which is below the minimum detectable signal. The intensities do not differ by more
than 0.002 pm2 for the individual isotopomers.
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Table 5.6: Harmonic frequencies ωi in cm−1 calculated by SPECTRO for all isotopomers

i C35Cl3F C37Cl3F C35Cl2
37ClF C35Cl37Cl2F

1 1113.300 1113.292 1113.292 1113.292
2 839.387 839.297 839.261 839.297
3 839.339 838.104 838.140 838.104
4 542.978 540.411 540.411 540.411
5 402.182 401.903 401.884 401.903
6 402.156 398.379 398.398 398.379
7 351.970 349.720 349.720 349.720
8 245.328 244.063 244.065 244.063
9 245.327 242.899 242.898 242.899

Discussing anharmonic constants in table 5.7 and 5.8

The order of the vibrational levels in table 5.7 and 5.8 corresponds to the l-matrix
presented in chapter 3.4 or to the table 5.6 above.

The agreement with experiment is very good for nearly all values which can be
compared. Nevertheless x18 and x19 deviate considerably from experiment. This is
an exception since all other experimental values are very well reproduced. It might
be because it involves the normal mode ν1 which shows an unexpected isotopic shift
(see below) and which deviates by ∼ 10 cm−1 from experiment.

The experimental values had been determined by a Birge-Sponer analysis of the
measured spectrum which takes into account fundamentals, overtones, combination
bands and hot band transitions. If an analysis of only the corresponding fundamen-
tals and their combination is carried out the experimental value would reduce in
magnitude to ≈ -1.2 cm−1.

Considering in table 5.7 those anharmonic constants which do depend on symme-
try (xtt′) it becomes evident that the difference in anharmonicity due to symmetry
is small. This might be a further reason why it is not astonishing that the other cal-
culated results for the vibrational levels for symmetric and asymmetric isotopomers
using the asymmetric Hamiltonian are quite similar.

As it could already be seen in the eigenvalue spectrum the isotopic shift has al-
ready for the anharmonic constants the correct tendency. Again only the results for
CCl3F have a deviating behaviour. We find thus consistency with respect to table
5.3. Clearly an isotopic shift can not be seen within the x11. The corresponding
normal mode ν1 corresponds to a C-F stretching while a systematic decrease in an-
harmonicity is observed This might reflect the error which has been already observed
for the fundamental ν1 with respect to experiment. Surprisingly, when considering
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the x2i or x3i, degenerate C-Cl strechting normal modes ν2 and ν3 having even a
larger error than ν1 show as an isotopic shift a systematic decrease in anharmonicity.
This might be due to compensating errors.

From the results for those anharmonic constants of symmetric top isotopomers
which have to be identical (xsta and xstb or xtata and xtbtb) it becomes clear that the
order of numerical inaccuracies is in the range of less than 0.1 cm−1. Furthermore
one can see in table 5.7 that the results for the anharmonic constants which stemm
from the Coupling Approach PES (’C’) are often slightly closer to the experimental
values than those stemming from PES ’B’.

In table 5.8 all results for the degenerate/degenerate anharmonic constants seen
by different symmetries are displayed. From this table it is obvious that the two
ways of transforming the xasym to xsym leads to significantly different values.

Both ways of transformation involve approximations. One by directly correlat-
ing quantum numbers of an asymmetric top representation with quantum numbers
of a symmetric top expression. The other by simply averaging vibrational levels.
However, the latter allows in a way to determine an error since the deviation of the
mean value from the original eigenvalues is known. The error of the anharmonic
constants x ranges in the order of a few percent with the exception of ∆x28 (≈ 100
C37Cl3F involving the degenerate normal mode 8 for which already the fundamental
has been the most difficult to predict in comparison to experiment. In general the
errors for C37Cl3F are larger than for C35Cl3F. The errors for the g constants often
range in the order of 100 Even though large errors are observed for the ’SPEC’
results table 5.8 clearly demonstrates that the ’HAMDIFF’ method does not yield
anharmonic constants which correspond to their eigenvalue spectrum. This can
easily be shown by recalculating an ”eigenvalue spectrumsym” again by using the
obtained xsym

′HAMDIFF ′ and xsym
′SPEC′ and comparing it to the SPECTRO ”eigenvalue

spectrumasym”. It is trivial that the results for those eigenvalues which have been
used to determine xsym

′SPEC′ will be better reproduced by using xsym
′SPEC′. But what

about the combination bands? As an example will be considered the state (ν4 + ν8)
of C37Cl3F. Its energy indicated in the SPECTRO ”eigenvalue spectrumasym” is
776.57215 cm−1. Trying to recalculate this with the help of the xsym shown in table
5.7 and 5.8 we find:

(ν4 + ν8) = ν4 + ν8 + xsym
44 + xsym

48 + xsym
88 + gsym

88

= 398.19 cm−1 + 241.79 cm−1 − 0.599 cm−1 + 0.81 cm−1

+xsym
88 + gsym

88

= 777.39 cm−1 + xsym
88 + gsym

88
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Table 5.7: Anharmonic constants xasym
ij and their experimental values [49] in [cm−1] determined

for all isotopomers with the help of PES ’B’ and for C35Cl3F in addition with the help of PES
’C’. All experimental values refer to a symmetric top system even for the asymmetric top iso-
topomers. There is neither experimental evidence for C37Cl3F nor for any degenerate/degenerate
anharmonicity tt′ . The order of the vibrational level corresponds to the energetical order (see table
5.6). All anharmonic constants are given within the asymmetric top description being copied from
the SPECTRO output.

(C35Cl3F) C37Cl3F C35Cl2
37ClF C35Cl37Cl2F

ij xij (’C’) xij (’B’) exp. xij xij exp. xij exp.
11 -8.764 -8.701 -9,17(5) -8.697 -8.702 -9.08 -8.700 -9.00(2)
12 0.066 0.426 - 0.353 0.367 - 0.408 -
13 0.108 0.425 - 0.301 0.347 - 0.367 -
14 -1.166 -1.420 - -1.473 -1.461 - -1.464 -
15 -3.223 -3.458 - -3.426 -3.484 - -3.457 -
16 -3.211 -3.460 - -3.423 -3.420 - -3.412 -
17 0.681 0.977 - 1.022 0.989 - 1.008 -
18 0.546 0.473 -3.65 0.484 0.445 -3.65 0.471 -
19 0.552 0.477 -3.65 0.437 0.425 -3.65 0.473 -
22 -3.323 -3.466 - -3.392 -3.515 -3.497 -
23 -1.520 -1.369 - -1.333 -1.387 - -1.105 -
24 -3.343 -3.013 - -2.873 -3.147 - -3.061 -
25 -1.979 -1.816 - -1.753 -2.186 - -1.971 -
26 0.354 0.382 - 0.326 0.287 - 0.213 -
27 -1.634 -1.762 - -1.696 -1.794 - -1.801 -
28 -1.244 -1.243 - -1.1475 -1.579 -1.579 -1.615 -
29 -1.350 -1.654 - -1.616 -1.275 - -1.221 -
33 -2.942 -3.508 - -3.431 -3.419 - -3.490 -
34 -3.337 -3.014 - -2.925 -2.933 - -2.892 -
35 0.355 0.293 - 0.287 0.392 - 0.281 -
36 -1.929 -2.045 - -2.074 -1.954 - -1.876 -
37 -1.683 -1.756 - -1.699 -1.681 - -1.662 -
38 -1.417 -1.640 - -1.622 -1.237 - -1.230 -
39 -1.224 -1.357 - -1.248 -1.601 - -1.574 -
44 -0.592 -0.621 - -0.599 -0.612 - -0.604 -
45 0.753 0.761 1.06 0.800 0.805 - 0.792 -
46 0.764 0.751 1.06 0.818 0.832 - 0.836 -
47 -0.691 -0.833 -0.87 -0.768 -0.807 -0.82 -0.786 -
48 -0.617 -0.643 -0.59 -0.5915 -0.639 -0.57 -0.629 -0.55
49 -0.603 -0.624 -0.59 -0.603 -0.600 -0.57 -0.608 -0.55
55 -0.449 -0.435 - -0.433 -0.406 - -0.387 -
56 -0.967 -0.882 - -0.815 -0.786 - -0.827 -
57 -0.373 -0.359 - -0.377 -0.333 - -0.328 -
58 -0.294 -0.387 - -0.295 -0.024 - 0.027 -
59 0.044 -0.012 - -0.095 -0.312 - -0.345 -
66 -0.428 -0.401 - -0.366 -0.420 - -0.393 -
67 -0.373 -0.356 - -0.371 -0.385 - -0.398 -
68 0.014 -0.008 - -0.084 -0.364 - -0.371 -
69 -0.276 -0.309 - -0.216 -0.030 - 0.016 -
77 -0.079 -0.077 - -0.079 -0.077 - -0.077 -
78 -0.007 -0.052 - -0.047 -0.066 - -0.065 -
79 -0.007 -0.073 - -0.078 -0.067 - -0.042 -
88 -0.051 -0.060 - -0.049 -0.058 - -0.050 -
89 0.205 0.199 - 0.190 0.192 - 0.212 -
99 -0.044 -0.053 - -0.043 -0.049 - -0.044 -
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(ν4 + ν8)′HAMDIFF ′ = 777.39 cm−1 + (xsym
88 )′HAMDIFF ′ + (gsym

88 )′HAMDIFF ′

= 777.39 cm−1 − 0.05 cm−1 + 0.14 cm−1 = 777.49 cm−1

while for ’SPEC’

(ν4 + ν8)′SPEC′ = 777.39 cm−1 + (xsym
88 )′SPEC′ + (gsym

88 )′SPEC′

= 777.39 cm−1 − 1.27 cm−1 + 0.48 cm−1 = 776.6 cm−1

Other combination bands in the ”eigenvalue spectrumasym” are nicely reproduced
by both xsym

′HAMDIFF ′ and xsym
′SPEC′.

Unfortunately, experimental evidence is very poor for all isotopomers and it is
thus not clear how good the results are. However, a first rough estimate is certainly
given by xsym

′SPEC′.
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Table 5.8: Anharmonic constants xtt′ and gtt′ in [cm−1] determined for all symmetric top iso-
topomers within the asymmetric top description and the symmetric top description. Values in
column ’HAMDIFF’ are obtained by subtracting the two Hamiltonians as described in Appendix
A. Values in column ’SPEC’ are obtained by calculating them from the asymmetric top eigenvalue
spectrum. For the latter an estimated error is given which is determined according to chapter
4.3.1. by the means of deviation from the SPECTRO output values. The order of the vibrational
level corresponds to the energetical order (see table 5.6).
C35Cl3F C37Cl3F xasym

tt′ xasym xsym
′HAMDIFF ′ xsym

′SPEC′ ± error xasym xsym
′HAMDIFF ′ xsym

′SPEC′ ± error
22 -3.466 -3.487 -3.678 0.17 -3.392 -3.411 -4.203 0.75
23 -1.369 - - -1.333 - -
25 -1.816 -0.797 -2.211 0.08 -1.753 -0.803 -2.291 0.75
26 0.382 - - 0.326 - -
28 -1.243 -1.474 -1.803 0.08 -1.175 -1.415 -0.718 0.675
29 -1.654 - - -1.616 - -
33 -3.508 - - -3.431 - -
35 0.293 - - 0.287 - -
36 -2.045 - - -2.074 - -
38 -1.640 - - -1.622 - -
39 -1.357 - - -1.248 - -
55 -0.435 -0.418 -0.397 0.005 -0.433 -0.399 1.302 0.75
56 -0.882 - - -0.815 - -
58 -0.387 -0.179 0.001 0.01 -0.295 -0.172 -0.230 0.675
59 -0.012 - - -0.095 - -
66 -0.401 -0.366 - -
68 -0.008 - - -0.084 - -
69 -0.309 - - -0.216 - -
88 -0.060 -0.057 -0.059 0.005 -0.049 -0.046 -1.268 0.6
89 0.199 - - 0.190 - -
99 -0.053 - - -0.043 - -
g22 - 2.765 0.748 0.65 - 2.745 1.280 0.6
g25 - -1.239 1.446 1.8 - -1.110 4.640 0.7
g28 - 0.465 0.290 0.02 - 0.204 -0.772 0.4
g55 - 0.149 -0.022 0.0006 - -0.008 -1.277 0.4
g58 - -0.162 -0.169 0.125 - -0.083 2.768 0.5
g88 - 0.145 0.041 0.04 - 0.141 0.476 0.1
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5.2 Conclusions

In this work DFT is used to predict spectroscopic data for CCl3F. The following
new aspects which have been presented are highlighted.

• The hybrid functional PBE0 gives excellent predictions for the most abundant
isotopomers of CCl3F. Simple GGA functionals such as BLYP are inadequate
(even LDA gives better results). Simple inspection of geometry optimization
calculations facilitates the choice of an appropriate functional for CCl3F. Con-
cerning the prediction of the C-Cl bond length PBE0 could still be improved.

• DFT allows to determine a PES through terms which involve 3D cuts. 19 single
point calculations are sufficient for an analysis using second-order perturbation
theory (SPECTRO).

• More interestingly using gradient and second derivative data to determine a
PES for normal modes with higher anharmonicity constants only 144 geometries
are necessary to be calculated (Coupling Approach + MULTIMODE).

• The vibrational energy levels are determined by variational theory and by per-
turbation theory. Although perturbation theory gives not the exact eigenvalues,
here it yields high quality predictions for the energy levels, which are of the
same accuracy as the results obtained by variational calculations. Therefore the
optimum would be to proceed in analogy to the generation of PES ’C’ and its
results. The use of MULTIMODE is recommended because it allows to check
easily and cheaply the results. Thus the advantages of these both programs
can be joined and exploited extensively

• In this work the use of an asymmetric Hamiltonian for the C3v molecules
C35Cl3F and C37Cl3F is legitimate for the eigenvalue spectrum but not for the
anharmonic constants.

• An explicit expression for gtt′ in terms of xasym is identified. The expressions to
transform anharmonic constants obtained by an asymmetric top Hamiltonian

into anharmonic constants corresponding to a symmetric top Hamiltonian

can be calculated by a short FORTRAN program which uses the SPECTRO
output as input. Checking the results with the help of the eigenvalue spec-
trum leads to doubts concerning these results. Eventually, the results for other
molecules whose anharmonic constants had already been calculated using the
same expressions have to be corrected.

• Including higher dimensional cuts into the PES calculated by cheaper basis sets
as DZP does not necessarily improve the results.
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• Throughout this study the magnitudes related to normal modes 1 and 2/3
show to be more difficult to predict than magnituteds related to other normal
modes. Clearly it would be worth it to undertake efforts in order to increase
the accuracy of predictions for these three normal modes.

The Algorithm

As a general conclusion from this work the following algorithm for the calculation
of the infrared spectrum of a given molecule is proposed. It follows in principle the
procedure used to obtain the results for PES ’C’. This algorithm scales only with N
in the calculation time (N being the number of nuclei in the molecule).

The Algorithm

1. Determination of the appropriate functional for the system by comparison of
calculated geometries with experiment.

2. DFT calculation of the energies and gradients at n ∗ (3N − 6) points. n = 16
was sufficient in the case of CCl3F.

3. Use the Coupling Approach to obtain the PES (see chapter 2.4) for

V (Q) =
∑

i

V (Qi)
(1)energies

+
∑

j 6=i

V (Qi, Qj)
(2)gradients

4. Use MM-VCI for the vibrational levels (see chapter 2.2). Results correspond
to those for PES ’A’.

5. Calculate all anharmonic constants from the eigenvalue spectrum if and only if
the molecule has a symmetry higher than Cs.

6. Derive the force field from the PES.

7. Use it for SPECTRO in order to determine vibrational absorption intensities,
rotational constants and, in the case that the molecule has not a symmetry
higher than Cs, also anharmonic constants.



CHAPTER 5. DISCUSSION, CONCLUSIONS AND OUTLOOK 68

5.3 Outlook

All methods used in this work yielded results which are of the state of the art and
which come often close to experimental accuracy. However, theoretically there is no
limit of improvement until experimental accuracy is reached.
In order to improve for example the reproduction of the two highest lying funda-
mentals and other properties of the molecule which involve the same nomral modes
one could make efforts in finding an even more suitable functional for CCl3F. Alter-
natively one could increase the number of calculated points on the PES involving
their normal modes.

5.3.1 The Coupling Approach for other Molecules

First of all, the other isotopomers of trichlorofluoromethane should be calculated
with the same approximations and compared one to each other. If the Coupling
Approach likewise shows to yield as excellent results as in this work, larger molecular
systems with more anharmonicity are to be tackled trying to keep the error with
respect to experiment in the range of errors of the systems considered in this work.

5.3.2 Further development of the grid for the PES within the Coupling

Approach

The PES is obtained by using the information of points lying exclusively equidis-
tantly on a 1D grid. This equidistant distribution might introduce numerically
bigger errors in regions of the PES where the gradient varies more than in regions
where the PES is relatively flat. Thus, it is proposed to distribute in an equidistant
manner only a part of the total number (n) of points on the 1D cuts which are to be
calculated and then to calculate first their gradients and second derivatives in order
to determine rather qualitatively how the gradient varies. If the absolute value of
the second derivative is large the number of additional points close to that point for
which the second derivative has been calculated should be increased while in those
regions where the second derivative is small no more points have to be added.
Furthermore it is proposed to distribute those points being economized by the non-
equidistant distribution selectively in regions of the full dimensional PES which are
assumed to have large gradients. These regions can be identified by a thorough
comparison between the normal modes with respect to the potential energies, the
gradients and the second derivatives. Do they differ a lot it is of big interest to
calculate further geometries lying in between the normal modes. For example, if
fijj(Qi,m) (the second derivative of the potential energy with respect to j at the
geometry m of the normal mode i) is a value which is considerably different from
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fjii(Qj,m′) it is proposed to carry out a single point calculation of the geometry lying

between Qi,m and Qj,m′ : Q
(ij)
mm′ . In other words, if ∆ff = |fjii(Qj,m′)| − |fijj(Qi,m)|

is big one should do another calculation at Q
(ij)
mm′ . Of course, the closer the values m

and m′ are the more important the information, therefore a normalization factor for
∆ff is proposed: 1

|m−m′|
. There are ∆ for potential energies, gradients and second

derivatives at all already calculated geometries on the 1D cuts. One would have to
rank them while taking into account that certain combinations might be of special
interest. For example, of big interest would be the combination of a big ∆ for the
potential energy together with gradients where the sign of the energetically lower
lying gradient is negative with respect to the mode with the higher potential energy
and where the sign of the energetically higher lying gradient is positive with respect
to the mode with the lower potential energy. The additional single point calcula-
tions can easily be included into the expression for the potential energy within the
Coupling Approach by fitting the results in linear combinations of polynomial ex-
pansions of the corresponding normal modes. Thus, interpolation enters inherently
the Coupling Approach. This improvement can be tested continuously for conver-
gence.
As a testing case the normal modes 1 and 2/3 could be of special ineterest. Using
this study and trying to improve the PES ’mode selectively’ for normal mode 1,2
and 3 one could easily quantify any slight improvement.

5.3.3 Further development of SPECTRO

The not working subroutine in SPECTRO which uses an appropriate Hamiltonian

for symmetric top molecules could be made to work also for orders of the principle
rotational axis greater than two. Or a procedure is implemented which determines
the anharmonic constants of the symmetric top Hamiltonian with the help of the
force constants which were estimated within the asymmetric top Hamiltonian.
Thus one could calculate the same molecule in order to determine quantitatively
the influence of using the Hamiltonian with the unsuitable symmetry.

Alternatively a small program could be developed which determines the anhar-
monic constants from the eigenvalue spectrum as it was done in this study whithin
the ’SPEC’ approach. Also higher vibrational levels should be calculated for the
two Hamiltonian.
In addition one should implement routines which can make use of the PES obtained
by the Coupling Approach such as ’C’. The values predicted with the help of ’C’
were the most precise ones. Therefore any developments in this direction seem to
be promising.
Concerning the anharmonic constants it would also be useful to have more experi-
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mental evidence in order to compare. Especially further results for x18 (see chapter
5.1) and the g constants would be interesting.



Appendix A

Transforming Anharmonic

Constants

As already mentioned in chapter 2.2.2 and 3.5 in this appendix some simple relations
between the anharmonic constants of the asymmetric top and the symmetric top
description are derived.

In order to read in the SPECTRO output for the anharmonic constants xasym and
to transform them into xsym and g a small FORTRAN program has been written.
The program respects the SPECTRO notation: 1,4 and 7 are non degenerate modes.
2 and 3, 5 and 6, 8 and 9 are the two components a and b of a given degenerate mode.
The energy of the modes is decreasing from 1 to 9. The matrix of the anharmonic
constants of C35Cl3F is symmetric with respect to its diagonal and looks like this:

1 2 3 4 5 6 7 8 9
1 −8.701
2 0.426 −3.466
3 0.425 −1.369 −3.508
4 −1.420 −3.013 −3.014 −0.621
5 −3.458 −1.816 0.293 0.761 −0.435
6 −3.460 0.382 −2.045 0.751 −0.882 −0.401
7 0.977 −1.762 −1.756 −0.833 −0.359 −0.356 −0.077
8 0.473 −1.243 −1.640 −0.643 −0.387 −0.008 −0.052 −0.060
9 0.477 −1.654 −1.357 −0.624 −0.012 −0.309 −0.073 0.199 −0.053

Thus, there are n×n
2

+ n
2

= 45 elements. The 6 × 6 matrix for the anharmonic
constants of the symmetric top description contains only 21 elements. In order to

71
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account for numerical inaccuracies all expressions yielding the same element in the
6 × 6 matrix are averaged by the program. The input for the program has to be
an ASCII file named ’input’ which contains only the above matrix in the following
form:

−8.701
0.426 −3.466
0.425 −1.369 −3.508
−1.420 −3.013 −3.014 −0.621
−3.458 −1.816 0.293 0.761 −0.435
−3.460 0.382 −2.045 0.751 −0.882 −0.401
0.977 −1.762 −1.756 −0.833 −0.359 −0.356 −0.077
0.473 −1.243 −1.640 −0.643 −0.387 −0.008 −0.052 −0.060
0.477 −1.654 −1.357 −0.624 −0.012 −0.309 −0.073 0.199 −0.053

To read in the input correctly it is important that all elements stand precisely in
their column and that the distance between the columns is exactly 6 blanks. The
precision of the program’s output is adjusted to the precision of the input. So, in
the case of bigger anharmonicities than above the output format would have to be
adopted. The output of the above input will be in the file ’xsym’ which is generated
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by the executable and will look like this:

j i xsfin(i, j) gfin(i, j)
1 1 −8.70100 0.00000
1 2 0.42550 0.00000
1 3 0.00000 0.00000
1 4 −1.42000 0.00000
1 5 −3.45900 0.00000
1 6 0.00000 0.00000
1 7 0.97700 0.00000
1 8 0.47500 0.00000
1 9 0.00000 0.00000
2 2 −3.48700 2.80250
2 3 0.00000 0.00000
2 4 −3.01350 0.00000
2 5 −0.79650 −1.13400
2 6 0.00000 0.00000
2 7 −1.75900 0.00000
2 8 −1.47350 0.17350
2 9 0.00000 0.00000
3 3 0.00000 0.00000
3 4 0.00000 0.00000
3 5 0.00000 0.00000
3 6 0.00000 0.00000
3 7 0.00000 0.00000
3 8 0.00000 0.00000
3 9 0.00000 0.00000
4 4 −0.62100 0.00000
4 5 0.75600 0.00000
4 6 0.00000 0.00000
4 7 −0.83300 0.00000
4 8 −0.63350 0.00000
4 9 0.00000 0.00000
4 5 −0.41800 −0.02300
5 6 0.00000 0.00000
5 7 −0.35750 0.00000
5 8 −0.17900 −0.16900
5 9 0.00000 0.00000
6 6 0.00000 0.00000
6 7 0.00000 0.00000
6 8 0.00000 0.00000
6 9 0.00000 0.00000
7 7 −0.07700 0.00000
7 8 −0.06250 0.00000
7 9 0.00000 0.00000
8 8 −0.05650 0.15600
8 9 0.00000 0.00000
9 9 0.00000 0.00000

(A.1)
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By assigning 1,4 and 7 to s, s′ and s′′ and 2,5 and 8 to t, t′ and t′′ respectively one
has determined all anharmonic constants within the harmonic top description for a
C3v symmetric molecule.
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Figure A.1: FORTRAN program to transform the xasym into xsym according to the ’HAMDIFF’
approach.
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Figure A.2: program continued
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Figure A.3: program continued
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Figure A.4: program continued
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All MATHEMATICA files which have been used to determine by successive sub-
stitution from the SPECTRO output the anharmonic constants within the ’HAMD-
IFF’ approach are also shown in this appendix. The following indeces have been
used (unlike to the previous text):

• Normal modes 1,2 and 3 are defined to be the non degenerate normal modes

s,
′
s and ′′

s (in the previous text 1, 4 and 7).

• Normal modes 4, 5 and 6 are the degenerate normal modes sym
t ,sym

t′ and sym
t′′ or

asym
ta ,asym

ta′ and asym
ta′′ , respectively (in the previous text 2, 5 and 8).

• Normal modes 7,8 and 9 correspond to asym
tb ,asym

tb′ and asym
tb′′ , respectively (in the

previous text 3, 6 and 9).

• All quantum numbers n correspond either to nasym
s or account for the symmetric

top expression.

• All quantum numbers nas account for the degenerate modes in the asymmetric
top expression.

• x is equivalent to xsym, xas to xasym.

The following two correlation have been assumed (according to chapter 3.5 and
[50]): nt = 1 and lt =1 corresponds to nasta = 1 and nastb = 0 while nt = 2 and
lt =2 are correlated with nasta = 1 and nastb = 1. All files which were used to
obtain the equations listed in chapter 3.5 are printed out in the following order
(each determined variable is incorporated into the determination of the following
file):

1. Determination of the difference between the zero point energies (ZPE) for all
n = 0.
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Figure A.5: Determination of the difference between the zero point energies (ZPE).
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Figure A.6: Determination of the difference between the zero point energies (ZPE) continued.
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Figure A.7: Determination of the difference between the zero point energies (ZPE) continued.
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2. Determination of g66 for n6 = l6 = 1 and nas6 = 1, nas9 =0..
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Figure A.8: Determination of g66.
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Figure A.9: Determination of g66 continued.
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Figure A.10: Determination of g66 continued.
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Figure A.11: Determination of g66 continued.
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Figure A.12: Determination of g66 continued.
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3. Determination of x46 for n6 = l6 =2 and nas6 = nas9 = 1.
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Figure A.13: Determination of x46.
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Figure A.14: Determination of x46 continued.
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Figure A.15: Determination of x46 continued.


